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1.0 SUMMARY

Following a successful demonstration of the field performance of laminated
wood composite blades, on intermediate size MOD-OA wind turbines, a contract
(DEN3-260) was awarded for the Development of Advanced Wood Composite Blade
Technology. Tasks contained within this contract were:

Primary Task - Design and Fabrication of a Two-Bladed, MOD-O Research Rotor,

with Complete Tip to Tip Wood Composite Construction (flow through
hub design).

Secondary Tasks -

1. Design of a Load Take-Off Stud Test Program and Fabrication of

Stud Test Samples for Evaluation Under a Separate NASA Sponsored
Program.

2. Design of a Wood/Epoxy Laminate Test Program and Fabrication of
Laminate Test Material for Evaluation Under a Separate NASA
Sponsored Program.

3. Design and Conduct Test Programs to Qualify Advanced Composite
Concepts.

4, Design and Fabrication of a Splice Joint Test Article.
5. Design and Fabrication of an Inner Rotor (Hub) Test Article.

Items 4 and 5 above were to be tested at U.S. Government facilities under
NASA-Lewis Research Center (NASA-LeRC) direction and are to support the
design developed within the principal task.

The wood composite rotor structure was designed featuring epoxy laminated
Douglas Fir veneers for the principal structure with some use of synthetic
fibers (E-glass and graphite) for reinforcement of the prototype hub.
Synthetic fiber augmentation was recommended due to the size and quantity of
holes present in the hub region. Variations and simplifications on the outer
rotor structural design, utilized in earlier wood/epoxy blades, were
justified and documented during the conceptual design phase. Adhesive
splicing of the two blades to the hub by use of structural finger joints is
another key feature of this design. Final blade shape was developed in

accordance with a stall-limited, 400 kW (maximum power), 90 foot diameter
specification.

Calculations of margins of safety for various load conditions have been
examined and are documented. The lowest positive margin of safety (3

percent) was calculated in the hub at rotor centerline for the 125 mph wind
(with gusts) extreme wind load case.



Fabrication costs have been estimated for a production version of the rotor
design presented within this report. The costed rotor is assumed to be
simplified, relative to the prototype, by elimination of research specific
features. In 1983 dollars, the cost per rotor was estimated at $25,452 for
the 100th rotor at a production rate of 120 rotors per year (Note that this
estimate excludes the cost of teetering hardware).

A DOE/NASA reassessment of Wind Energy Program needs resulted in a

termination of the prototype rotor fabrication task. Partially completed
tooling has been placed in storage.

2.0 INTRODUCTION

Wind energy capture technology continues to be developed to compete, in
particular geographical areas, with petroleum fuels and other energy
alternatives for electrical power generation. Much of the continuing
interest in wind energy is due to the encouraging results of earlier
DOE/NASA projects. These efforts succeeded in overcoming many of the
numerous technical obstacles to developing wind energy conversion as a
workable technology. Although wind turbine blade costs have been
significantly reduced due to the application of wood/epoxy composite
technology (refs. 1, 2 and 3), it is expected that rotor costs can be
lowered further by continuing the wood/epoxy composite structure across the
rotor centerline. Such a composite hub concept offers two specific cost
advantages over current rotors:

1. Most metallic hub elements are eliminated, thereby avoiding the
cost of expensive forgings.

2. The use of relatively high cost load take-off studs, which
transfer blade loads into the hub, is eliminated.

Conceptual and Preliminary Design efforts were conducted to review and
explore various structural, configuration, and manufacturing options for the
Final Rotor Design effort. Due to the NASA-LeRC reassessment of both
aerodynamic performance as well as the limited MOD-O generator capability at
NASA's Plumbrook Station, where the prototype was scheduled for test, the
rotor diameter specification was changed from 125 feet to 90 feet at the
conclusion of the Conceptual Design phase.

3.0 ROTOR DESIGN SPECIFICATION

The contract required the design of the wood composite rotor to be within
parameters described in this section. The final design specifications are
listed in Table I. Compliance of rotor aerodynamics with specified power

producing characteristics was verified by NASA-LeRC throughout the design
effort.




3.1 Geometry and Aerodynamics

As specified by NASA-LeRC, the final design rotor was to feature a planform
with the following key parameters:

Diameter 90 ft
Tip Airfoil NACA 64(3)-6XX*
Maximum Power 400 kW

*Thickness to Chord Ratio to be contractor recommended

The tip airfoil was specified by NASA-LeRC due to good lift versus drag and
drag versus thickness characteristics. These features combine to provide
aerodynamically and structurally efficient sections. Furthermore, the same
family of airfoils had been selected for the MOD-5A rotor and commonalty was
considered desirable. The MOD-5A rotor refers to the 400 foot diameter rotor

program conducted by the General Electric Company under DOE/NASA
sponsorship.

3.2 Loads and Design Cases

Preliminary and Final Design operating loads were furnished by NASA-LeRC as
developed from their MOSTAB computer model. These loads are given in Table
IT. In Table II, loads are given as a function of radial distance from rotor
centerline, referred to as rotor 'station', in inches, from centerline.

3.3 Rotor to Drivetrain Interface

The contract required that NASA and the contractor jointly develop a load
take-off concept for the teetering hub bearing assembly which is to be NASA
designed and supplied. Here, load take-off refers to a mechanical transfer
of loads from the rotor to the driveshaft assembly. A teetering hub is a hub
design which allows for shedding of peak wind gust loads by allowing the
rotor to pivot about its centerline on a shaft which is perpendicular to the
wind direction. A hard teeter stop load of 170,000 foot-pounds was specified
by NASA during the Final Design phase. A hard teeter stop load is the
highest load to be experienced by the teetering hub mechanism. This load
would occur when the rotor teeters against its mechanical limits. The rotor
is expected to experience this load for less than 5 percent of rotor
operation, which would be approximately 20,000,000 cycles.



4.0 ROTOR DESIGN CONCEPT

The contractual effort entailed an evolutionary approach to arrive at a
final design which would meet the NASA-LeRC requirements. This section
describes the rotor design following completion of the final design phase.

4,1 Structural Concepts

The rotor structure can be subdivided into three principal elements. These
are the two blades and the hub, all to be fabricated of wood/epoxy-based
composite plies. Each of the three elements is initially fabricated in
halves which are then bonded into single pieces. Finally all three elements
are joined to form an integral rotor. Clarification of this scheme is given
in Sections 5.3 and 5.4 as well as in Figure 44.

The three elements are joined using two splice joints. These joints are
centered at radial station 43 (inches) to each side of the rotor centerline.
This location was chosen for the following reasons:

1. Allows construction of the hub using single (96 inch long) veneer
sheets, thereby maintaining ease of manufacture and higher design
allowables (by elimination of butt joints within the laminate plies)
in the critically stressed area.

2. Allows rotor contour to change from a constant section

non-tapering hub to a tapering blade shape without manufacturing
restrictions imposed by veneers.

3. Allows all hub hardware to be precisely installed without added
complicattion of an assembly at rotor centerline.

4. Moment loads at the joint are reduced from that existing at rotor
centerline.

Three basic outer rotor structural design cases were presented for NASA
review during the Conceptual Design phase. Each case could be engineered to
have acceptable capability against identified loads. The cases were:

A. All veneer structure, with constant thickness from leading edge
to single shear web and decreasing thickness from shear web to

trailing edge as shown in Figure 1. Note that dimensions given in
all figures are in inches.

B. Principal structural laminate forward with single shearweb and

paper honeycomb/plywood skin tailpanel construction as shown in
Figure 2.

C. All veneer structure, with constant thickness from leading to
trailing edge and with single shear web as shown in Figure 3.




At the time of the Conceptual Design Review, upon Gougeon Brothers, Inc.
(GBI) recommendation, NASA rejected Concept B for further study. The
cost/benefit relationship of Concept B did not compare favorably with
Concepts A and C. This was primarily due to the more efficient placement of
structural material in the latter two concepts and significantly lower
manufacturing complexity and cost.

At the time of the Preliminary Design Review, NASA accepted Concept C for
the Final Design effort. This decision was based upon a GBI demonstration
that the aerodynamic flutter susceptibility difference between the Concepts
A and C was insignificant when the torsional stiffness of the respective
sections was taken into account. It was also shown that, due to panel
buckling concerns, any weight savings expected from Concept A relative to
Concept C would be minimal. Furthermore, it was identified that any such
weight savings would be negated in rotor cost due to the additional
manufacturing complexity involved in stepping down the shell thickness in

the proposed chordwise fashion.
4.2 Rotor Geometry
A final rotor geometry was approved by NASA-LeRC featuring the following
principal dimensions and is shown in Figure 4:
Tip Airfoil NACA 64(3)-618 (modified)
Tip Chord 24,0 in,

Inner Airfoil (at Station 156%) NACA 0028##*

Chord at Inner Airfoil 64.75 in,
Twist Zero degrees
Splice Joint Centerline Station 43
Hub Chord 57.5 in,
Hub Thickness 21.9 in,
Est. Prototype Weight 4522 1bs,.

*Station number is dimension in inches from rotor centerline.

**Defined inner airfoil is used for developing all intermediate
airfoils through linear interpolation. The actual airfoils from
Stations 156 to 180 are modified due to the need to smoothly
transition from the aerodynamic portion of the rotor into a hub
shape.



Airfoil selection was guided by structural as well as aerodynamic
considerations. The NACA 64(3)-series foils (also specified for MOD-5A)
provide good lift versus drag characteristics. A symmetrical NACA 0O-series
foil was proposed for the defining inboard station. This foil simplifies the
transition of airfoil shapes into a nearly symmetrical hub section, over
limited span, which minimizes wood veneer compounding complications.
Asymmetric and particularly reflexive inboard foils would have made the
inboard shape transition task extremely challenging for simplified wood
composite construction techniques. All foils between this symmetric foil and
the tip would be straight line interpolations of the two defined foils.

Thee inner airfoil thickness-to-chord ratio was minimized while maintaining
structural adequacy. Also, the outer rotor design was adjusted slightly to
provide NASA with the option of fabricating individual blades, with a root
geometry suitable for a bonded stud load take off, from the same tooling.
These individual blades would incorporate the standard MOD-OA stud pattern
and could be used for a related wind energy development project.

The outer rotor was designed with zero degrees actual twist between the
defining airfoils at Stations 156 and 540. However, due to a shift in the

angle of zero lift, the aerodynamic twist between these same two airfoils
would be 3 to 3.5 degrees.

The proposed final design contour was evaluated by Wichita State University,
under a separate NASA contract, for annual energy capture. Although GBI
recommended zero degrees of geometric blade twist, for desirable progressive
stalling properties, it was shown that a trade-off existed between
maximizing energy capture and optimizing power limiting characteristics. The
final design rotor was accepted by NASA, with no geometric twist from

centerline to tip, while acknowledging the recognized energy capture
shortcomings.

The rotor diameter was the only physical dimension initially specified by
NASA, while those dimensions pertaining to the aerodynamic portion of the
rotor were initially recommended by GBI during the preliminary design phase
and evaluated for acceptable performance by NASA. The outer rotor geometry
was developed by coordinating airfoil selection with structural assessment.
The geometry of the inner, non-power producing portion of the rotor was
driven strictly by structural and load take-off considerations. A summary of
geometric properties is presented in Table III. The final general hub
configuration can be seen in Figures 5 and 6 (Note that both the upwind and
downwind rotor configurations are shown).’

4.3 Inner Rotor Hardware and Load Take-Off
The hardware proposed for the rotor hub generally falls into two categories.

First, there is hardware which is removable and was to undergo detailed
design and be provided by NASA. Secondly, hardware which is to be bonded




into the laminate structure as the specific load take-off element, was
designed by the contractor, and was to be furnished with the rotor.

Two principal load take-off schemes were under consideration during the
conceptual stage of design. One concept featured a load take—off through the
edge laminate via bonded in place teeter bearings as is shown in Figure 7.
This design featured flexibility for upwind as well as downwind configuring
of a prototype rotor. This could take place by bringing the low speed shaft
of the machine into the hub through holes in both the upwind and downwind
faces of the hub. Hardware access and removal also appeared to be
straightforward with this concept.

The other concept shared similarities to the first with the exception of a
load take-off through metallic sleeves bonded into a thickened laminate in
the hub and attaching to the teeter bearing bases with through-bolts as is
shown in Figure 8. Because of the thickened laminate, the load transfer
plane would be very near the flatwise neutral axis of the hub section,
minimizing the effect of bending strain. Fastening, rather than bonding, of
the teeter bearings would allow indexing the delta-three angle of the
prototype rotor by providing multiple attachment options. The delta-three
angle is the angle between the rotor's teeter axis and a line perpendicular
to the rotor's spanwise centerline as shown in Figure 8. It couples blade
pitching to blade teetering (or flapping). Non-zero delta-three settings of
a teetered rotor are known to offer the following effects:

1. Positive delta-three angles couple the blade pitching to blade
teetering in such a way that an aerodynamic force component is
generated that opposes the teeter motion. Positive delta-three
angles have been shown to allow for more rapid yaw rates of a wind
turbine while restraining teeter motion, and suppressing teeter
motion at high yaw angles (refs. 4 and 5).

2. Non-zero delta-three angles have been shown to improve the
accuracy with which a wind turbine machine, in free yaw, will align
itself with the wind, thereby maximizing wind energy capture.

NASA-LeRC desired to investigate the effects of various delta-three settings
on this rotor because earlier work (ref. 4) indicated that the
interrelationship of delta-three angle and other rotor parameters such as
coning and airfoil shape upon wind turbine machine operating characteristics
are not precisely known. Delta-three angles of zero as well as +/- 22.5, +/-
45, and +/- 67.5 degrees are offered.

The ease of access to the teeter hardware was not as apparent with this
design. However, a three dimensional mockup was fabricated by NASA which
demonstrated that the access would be adequate. Following this
demonstration, NASA elected the concept offering variable delta-three angles
for the Final Design effort.

As discussed previously, the hub hardware serving to interface the composite
hub to the low speed shaft is principally an array of fastener sleeves



bonded into a thickened region of the composite hub structure. The actual
attachment of the metal teeter hardware to the composite hub takes place via
through-bolts. These bolts capture both the teeter bearing bases near the
interior laminate surface and also a welded teeter stop structure to the
exterior laminate surface. The fastener arrangement, as shown in Figure 9,
serves principally to transfer rotor torque and thrust into the teeter shaft
through two teeter bearing bases. See Appendix A for the analysis of torque
loads on these fasteners. The evaluated loads will yield very high positive
margins in this area of the design. Sufficient numbers of the bonded
fastener sleeves are placed in the hub laminate to allow the prototype rotor
to be configured for all specified delta-three angles. The teeter shaft
completes the transfer of rotor torque and thrust to the low speed shaft
while relieving the rotor of gust loads.

For the prototype rotor, two teeter stop and damping schemes were
‘considered. The first incorporated elastomeric 'bumpers' to stabilize
intermediate teeter excursions. Direct contact between the low speed shaft
and a steel weldment attached to the laminated hub would occur only when the
elastomeric bumpers failed to singularly react higher rotor teeter moments.

The second scheme was to use a pair of hydraulic dampers or shock absorber
mechanisms. These would attach externally to the hub and extend to a low
speed shaft attachment. The dampers would serve to reduce the normal teeter
stop loads on the rotor and could also be designed with internal 'hard
stops'. An added feature of this system was the capability of developing
variable damping as a function of teetering angle. Dampers could also be
utilized, on the prototype machine, with adjustable valving to allow for
optimizing the teetering behavior. Stock, high-capacity dampers were
identified which might serve in this function. A load take-off provision for
the first teeter stop scheme was designed by NASA, while provisions for the
second scheme were designed by GBI and are shown in Figure 10.

4.4 Instrumentation

Principal instrumentation on the prototype rotor was to include pressure
taps, angle of attack indicators, ice detection, and strain gages. The

pressure taps and angle of attack indicators were specified for installation
on only one blade of the rotor.

Stainless steel pressure taps were specified by NASA to be installed at
three spanwise locations (near 50, 75, and 90 percent of span). Twenty four
pressure taps were to be arrayed chordwise (twelve on each surface) at each
spanwise location as shown in Figure 11. Provisions for the installation of
three angle-of-attack probes, to be installed near each of the pressure tap
sets were also developed as required. This is shown in Figure 12. It was
also specified that the contractor provide three watertight enclosures and
conduit for electrical cables, for the necessary electronic signal
conditioning devices, in proximity to the pressure tap locations. Access to




these enclosures was to be provided via cover plates. These provisions were
designed and are illustrated in Figures 13, 14, 15, and 16.

4.5 Miscellaneous Provisions

At the conceptual design level, the design specification included
incorporation of aerodynamic tip brakes. The tip brake design concepts are
summarized in Appendix B. Further aerodynamic tip brake design and
development was not pursued.

It was specified by NASA that GBI furnish provisions for ice detectors,
addition of tip weights, and tip venting. Ice detection may be desired at
specific sites where icing conditions would necessitate rotor shutdown. Tip
weights could be added if any post-production balancing of the rotor would
be required. The venting serves to prevent pressurization of the structure
with changes in temperature or atmospheric pressure experienced when shipped
over routes with extreme altitude changes and also to prevent internal

moisture buildup. Figure 17 illustrates the details proposed to meet these
requirements,

Provisions for rotor lightning strike protection were proposed by both NASA
and the contractor. A laminated aluminum screen system, essentially the same
as utilized for MOD-OA blades, was NASA's final choice. Externally attached
aluminum strike diverter straps and a laminated aluminized fiberglass cloth
had also been proposed and evaluated for material and installation cost.
Although it was felt by both GBI and NASA that all three systems would be
technically feasible, the chosen system had been previously qualified (ref.
6) and represented therefore, minimal overall risk. Coverage of the rotor
was proposed strictly for the blade elements. Ground straps would be
installed just outboard of the splice joint, as shown in Figure 18. An
evaluation of conductive epoxies would be necessary to assure best
electrical connection from the screen to the ground straps and from other

conductive installations (such as pressure taps) to the screen as shown in
Figure 13.

5.0 FABRICATION CONCEPT and DESIGN DETAILS

The fabrication concept serves as one of the practical advancements of the
proposed design relative to previous efforts (ref. 7). Because of the
acceptance by NASA of chordwise centers of gravity which are further aft
from the airfoil leading edge, relative to previous programs, manufacturing
simplifications occur. These simplifications also permit more efficient
placement of structural material to counter critical flatwise design loads.

Many of the descriptions and design details furnished in this area of the
report pertain to and assume a rotor produced from prototype tooling.
However, some of the illustrated general manufacturing processes assume
production operations with the availability of production level tooling.



Some of the assumptions made for the production version of this rotor
include:

a) Use of 50 inch wide, 96 inch long, 0.1 inch thick rotary peeled

Douglas Fir Veneers (Prototype is baselined on 25 inch wide veneers
of same type)

b) Use of WEST SYSTEM (R) Epoxy

c) Use of ultrasonically graded veneer (GBI specified Blade Grade 2
in the outer rotor and Blade Grade 1 in the hub; see Appendix C)

d) Use of spanwise butt joints in outer rotor laminate with
controlled 3 inch stagger as shown in Figure 19.

The instrumentation enclosures will be installed in the prototype prior to
the bonding of blade halves.

5.1 Molds and Tooling

The general molding concept has not changed dramatically from earlier
efforts., As before, female half shell molds using vacuum bag lay up were
proposed. The machining of the laminated blade halves after lay up is
accomplished with a circular saw which is guided by the mold so that cut
angle and elevation are properly controlled.

For the prototype rotor, four molds were to be built. For fabrication of the
outer rotor, female high pressure and low pressure molds would be formed
from a full scale male pattern. In turn, all four outer rotor halves would
be manufactured from these tools. For fabrication of the constant section
inner rotor (hub), two female molds would be fabricated, without the need
for a male pattern. This is because of the relative simplicity of the outer
surfaces and the lower exterior contour tolerance requirements of the hub.

Other tooling necessary for fabrication of the prototype includes fixtures
for drilling and bonding stud hole bushings in the hub laminate, and
miscellaneous machining jigs for manufacturing holes in both hub surfaces as
well as access to instrumentation enclosures. Finally, some simple clamping

devices are necessary for bonding the assembled outer rotor parts (blades)
to the hub.

For early units, machining of the finger joints, which will allow for a
structural assembly of the three rotor parts, is assumed to take place at a

facility which supported a similar machining requirement under the MOD-5A
program,
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5.2 OQuter Rotor (Blades)

Fabrication of the outer rotor or blades consists of the following principal
operations.

Materials Preparation- Graded veneers are conditioned to a stable
moisture content and trimmed to dimensions required for molding.
Fiberglass cloth is checked for quality of weave and trimmed to
dimensions required for molding. Vacuum bagging materials are
prepared for molding.

Half shell molding- The mold surface is coated with epoxy gelcoat.
Required layers of fiberglass cloth and veneer are epoxy coated and
placed in mold. Entire layup is vacuum bag cured at room
temperature. This is shown in Figures 20, 21 and 22.

Half shell trimming- Circular saws are used to accurately trim the

leading and trailing edges of each blade half. This is shown in
Figure 23.

Half shell bonding- The shear web is bonded into position prior to

bonding the trimmed blade halves together. This is shown in Figures
24 and 25.

Preliminary finishing- Cleanup of excess adhesive at bonded joints
takes place.

Finger Joint Machining- Fach blade is accurately positioned with
respect to the cutting machinery. The ends are machined flush and
then fingers are carefully machined in vertical passes into the
blade end. This is shown in Figures 26 and 27.

Detail of the outer rotor structure is given in Figure 28.

5.3 Inner Rotor (Composite Hub)

Fabrication of the inner rotor, or hub, consists of the following principal
operations.

Materials Preparation- Graded veneers are conditioned to a stable
moisture content and trimmed to dimensions required for molding.
Fiberglass cloth is checked for quality of weave and trimmed to
dimensions required for molding. Vacuum bagging materials are
prepared for molding.

Half Shell Molding- The mold surface is coated with epoxy gelcoat.

Required layers of fiberglass cloth and veneer are epoxy coated and
placed in mold. Entire layup is vacuum bag cured at room

11



temperature. This sequence (minus gelcoat application) is repeated
once in the low pressure shell to manufacture the thicker structural
buildup. This is shown in Figures 29, 30, 31 and 32.

Load Take-Off Hardware Installation- Following accurate trimming of
the half shell edges, holes for load take-off studs are machined
into the compression side half shell. Then, a special jig is used to
accurately position and hold the load take-off studs during adhesive
bonding. This is shown in Figures 33 and 34.

Half Shell Bonding- Teeter hardware is installed and protected from
adhesive as the hub halves are bonded. This is shown in Figure 35.

Preliminary Shell Machining- A hole is machined to provide for low
speed shaft clearance. This is shown in Figure 36.

Preliminary Finishing- Cleanup of excess adhesive at bonded joints
takes place.

Finger Joint Machining- The hub is accurately positioned with
respect to the cutting machinery. Each end is machined flush and

then fingers are carefully machined in vertical passes into the hub
ends.

Details of the hub structure and finger joint are given in Figures 37
through 43. The figures illustrate the location of structural laminate and
hole reinforcements, as well as finger joint machining and joining details
and tolerances. Note that Figure 42 does not illustrate an inner rotor
element but is included in this section for completeness.

5.4 Rotor Assembly

Because the rotor is composed of three basic structural elements: two blades
and a hub, a plan to assemble the three pieces was developed. This consists
of bonding each blade to the hub in separate operations.

During each operation, care must be taken to maintain critical alignments
while the rotor components are positioned with the low pressure surfaces
facing up. The first of these alignments is the maintenance of linearity of
a reference line scribed on the common flatwise surface of all three pieces
with respect to a vertical plane. This maintains proper aerodynamic
relationships as well as keeps the center of gravity as close as possible to
the chordwise centerline of the hub, minimizing tower excitations. The other
alignment is the maintenance of linearity of a common leading/trailing edge
line with respect to a horizontal plane. Due to the lack of twist, this
becomes easier to accomplish and serves to maintain close tip alignment of
the two blades of the rotor with respect to the rotor disk. Figure 44
illustrates this configuration.
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While maintaining these alignments, each blade is brought into contact with
the hub during separate splice joint bonding operations. Clamping force is
then applied and maintained via balance-loaded external polyester cables

which compress the joint and keep the load relatively constant during cure,

5.5 Manufacturing Plan

A detailed Manufacturing Plan was developed by GBI and serves to identify
all manufacturing operations necessary for the fabrication of a prototype
rotor as designed. It is included in Appendix F for reference. Included in

the Manufacturing Plan are key quality control and quality assurance
provisions.

6.0 DESIGN SUPPORT TESTS

Several design support tests were specified within the original scope of the
project. General test plans were to be designed by GBI and the necessary

test articles were to be fabricated by GBI. These are described within this
section.

6.1 Qualification of Splice Joint

The structural joint which is utilized to bond the outer rotor pieces to the
inner rotor is perhaps the most innovative structural feature of this rotor
design. The specific joint type is a set of form fitting fingers as selected
for the baseline MOD-5A splice joints (reference Figures 41, 42, and 43).
Because of the NASA specified commonality which is to exist between the
finger joint geometry of these two projects, a finger length of 11.5 inches
(with a slope of 10:1) and a pitch of approximately 2.75 inches was used.

A cantilevered test article, as shown in Figures 45 and 46, was designed by
GBI to subject a set of these machined and bonded finger joints to
alternating bending stresses. Actuator loading at the extreme tip end of the
20 foot long test article would generate the desired outer fiber stresses.
The actuator loads are reacted at the root end of the article by advanced
load take-off studs (Design 4) which are similar to previous MOD-OA blade
concepts. The studs are epoxy bonded to laminate blocking at the root end
and attached to a rigid strongback. The test section of the test article is
a constant section wood/epoxy laminate box-beam containing the bonded set of
finger joints. The fundamental parameters guiding the design of the test
article were maximum actuator load and deflection, estimated extreme fiber

stress in the test area to yield a high cycle fatigue failure, and load
take-off stud capability.

The structural pieces were fabricated at GBI and supported 'prove out' of
the MOD-5A finger cutting machinery. The machined structural pieces were
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returned to GBI for final assembly. Shipment was made to NASA-LeRC after
final bonding of the joint and load take-off studs.

Installation of strain gages was performed by NASA-LeRC. The test article
was fatigue tested at Ft. Eustis, Virginia under a separate NASA-LeRC
contract.

6.2 Composite Hub

The final hub design featured wood/epoxy laminate structure augmented with
E-glass fibers placed between each veneer layer at an orientation of +/-45
degrees relative to wood fiber. The principal purpose in augmenting the
wood/epoxy laminate with glass fiber was to reduce the significant stress
concentrating effects of the large holes existing on both the upwind and
downwind faces of the hub. Both faces of the prototype rotor hub were
required to have an access hole so that the prototype rotor could be
operated both upwind and downwind of the tower. Furthermore, strength
augmentation is desirable due to the significant number of smaller
disruptions of the laminate in the thickened, low pressure side laminate.
These disruptions are created by the large number of load take-off sleeves
bonded in this region. For flexibility in the prototype rotor test program,
many additional bolt locations were provided so that the rotor could be
operated over a range of delta-three angles. To create additional positive
margin in the prototype rotor, the glass fiber augmentation was proposed by
GBI and accepted by NASA. Furthermore, the high pressure or tension side
hole was designed with both an oblong shape and with a carbon fiber/epoxy
liner to reduce the classic stress concentrating effects of such a
structural disruption. It is likely however, that a production version of
such a rotor would not require a large hole in each surface. It is also
unlikely that the numerous bonded sleeves for load take-off would be present
in a production rotor version.

NASA elected to waive any qualification testing requirements relative to the
hub design because of adequate positive margins in the area of the hub and
low assessed risk of prototype failure.

7.0 STRUCTURAL ANALYSIS

The structural analysis of the rotor consists principally of an assessment
of flatwise and edgewise section physical properties of the designed
structure. These properties were then evaluated against different NASA
furnished final design load cases to determine design margin levels. A
flatwise margins summary is provided in Table IV, It can be seen from Table
IV that the rotor's smallest positive (flatwise) margin is calculated as 3
percent for the extreme wind case at rotor centerline (Station O inches).
Edgewise margins, as expected, were large, and will be discussed later.
Where necessary, the design was modified to obtain positive flatwise
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margins. A preliminary evaluation of margins against combined loads was also

conducted at a limited number of rotor locations to determine magnitudes of
margin change.

Design allowables were also developed, based on materials test data, for
specific loading conditions. The allowables analysis is presented in
Appendix C. Data from references 8, 9, and 10 were utilized in the
development of allowables. Summaries of the structural analysis of the

different rotor components for different loading conditions are presented in
this section.

7.1 Outer Rotor
7.1.1 Normal Operating Loads

A normal operating load allowable was used to determine section capabilities
against defined flatwise and edgewise loads separately. Positive flatwise
margins were calculated for the entire rotor and are summarized in Table V

and in Figure 47. A minimum positive flatwise margin of 12 percent is
calculated at Station 276.

An analysis of margins against combined flatwise and edgewise loads was also
conducted for the normal operating load case. This analysis was conducted at
the rotor centerline (Station 0), at the splice joint centerline (Station
43), and at the rotor 'breakpoint' (Station 156). The 'breakpoint' is the
location of maximum chord as shown in Figure 4. Extreme fiber minimum and
maximum tensile stresses were evaluated around the high pressure perimeter
at the rotor centerline. Extreme fiber minimum and maximum compressive
stresses were evaluated around the low pressure forward perimeter of the two
outboard stations (Stations 43 and 156) by adding peak flatwise and peak
edgewise stresses. These stresses change linearly with distance from the
flatwise and edgewise neutral axes. Flatwise extreme fiber stresses were

ad justed, at rotor centerline, for the effects of the high pressure surface
(tension surface), low speed shaft cutout hole. Allowables for the highest
stressed surface fiber were utilized in accordance with the established

Goodman diagram (Appendix C, Figure 66) for each perimeter location
evaluated.

As shown in Tables VI, VII, and VIII, the combined loads analysis does show
reductions from the positive margins calculated for the flatwise design
operating case. The calculated combined minimum positive margins range from

14 to 149 percent,
7.1.2 Maximum Operating Loads
A maximum operating load allowable was used to determine inner and outer

rotor section capabilities against defined flatwise and edgewise loads.
Positive flatwise margins are seen throughout the rotor and are summarized
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in Table IX and in Figure 48. A minimum positive flatwise margin of 24
percent is calculated at Station 324,

7.1.3 Hurricane Loads

A static load allowable was used to determine inner and outer rotor section
capabilities against a fixed aerodynamic load of 70.1 1b/sq.ft. This value
is equivalent to a wind speed of 125 mph with an aerodynamic drag
coefficient of 1.25 and with a 1.4 multiplier for gusts. Positive margins
are seen throughout the rotor and are summarized in Table X and in Figure

49. A minimum positive flatwise margin of 3 percent is calculated at Station
0.

7.1.4 Buckling and EdgewiseALoads

The designed structure was also checked for positive margins against
flatwise buckling loads and was spot checked at three locations for expected
high margins against edgewise bending loads. The results are presented in
Tables XI and XII. A minimum positive flatwise buckling margin of 102
percent is calculated at Station 324; a minimum positive edgewise moment
capability of 569 percent is calculated at Station 156.

7.2 Splice Joint

The rotor section at which the splice joint is centered (Station 43) was
given a flatwise bending capability knockdown of 2 percent following an
assessment of available finger joint design data generated within the MOD-5A
program. The 2 percent knockdown does not imply a 98 percent joint
efficiency. Rather, it reflects the fact that a much larger total scale
effect knockdown must be taken for the overall rotor than just for the
limited volume finger joint area. Also, it accounts for the fact that butt
joints, which occur in the bulk outer blade laminate, have been
systematically excluded from the finger joint area. This 2 percent knockdown
was applied against the Station 43 section capabilities for normal and

maximum operating conditions, as well as hurricane gust conditions. Positive
margins are still present.

7.3 Inner Rotor

Hub sections were evaluated with allowances for low speed shaft cutouts and
with an additional stress concentration factor of 2.3, assumed for the
critical tension side (elongated) hole, due to classical analysis. Figure 50
shows the critical hub section element evaluated at rotor centerline
(Station O) which is one half of the high pressure shell. Due to symmetry,
the other half of the high pressure shell benefits from the same analysis
relative to flatwise loads. The assumed distribution of outer fiber stress,
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due to flatwise loads, over this same section is plotted in Figure 51. It is
felt that the analytical treatment of the holes was conservative because the
+/- 45 degree (relative to wood grain) glass fiber augmentation of the hub
laminate would reduce shear lag and stress concentrations below classical
levels. Benefits of E-glass fiber augmenting of the wood/epoxy laminate are
not accounted for in the parallel to grain allowable values, thereby
providing additional conservatism. The evaluation of stress levels and

material allowables in the hub near the low speed shaft cutouts is presented
in further detail in Appendix C.

Teeter stop loads, as presented by NASA, were evaluated against the design
capability of the load take-off provisions for both hydraulic and rigid
structure teeter stops, and positive margins are indicated against
conservatively estimated load take-off stud capability.

Paired 24 inch long studs are proposed with a moment arm approximately 29
inches from the teeter axis. Assuming simple single-acting hydraulic teeter
dampers, each stud would be required to perform for 20 million cycles at a
peak tensile load of 40,000 pounds. Recent stud fatigue data (generated

through the program described in Section 10.1) suggests such performance can
be easily attained.

7.4 General Rotor Properties

General rotor properties have been calculated by determining section
properties (weight per spanwise foot and flatwise and edgewise stiffness) at
twentyone spanwise locations. The computed weight and stiffness properties
have been combined with specified loads to calculate rotor deflections and
resonant frequencies through use of cantilevered beam relationships. The
ability of GBI to accurately compute and apply section properties to predict
overall rotor (or blade) deflection and frequency properties has been
demonstrated in previous design and fabrication efforts. General rotor

properties are presented in Tables XIII, XIV, and XV and in Figures 52, 53,
and 54.

8.0 COST ANALYSIS -

A Final Design Cost Analysis was conducted. The analysis focused on a
production version of the Final Design Prototype at different production
rates. Different capital equipment assumptions were applied to the different
production rate cases. Also, it was assumed that a production variation of
the prototype design would be lighter by 530 pounds. This weight savings
would be realized mostly through hub design simplifications including fewer

load takeoff provisions and less fiberglass augmentation. The cost analysis
is detailed in this section,
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8.1 Capital Costs

Capital cost assumptions were made for the three distinct production rates
of 2, 10, and 120 rotors per year. The costing basis for 2 rotors per year
production assumed use of existing prototype equipment. At this production

rate, continued dependence on subcontracting of finger joint machining has
been assumed.

At a production rate of 10 rotors per year, continued utilization of the
prototype tooling, with slight refinements, is assumed. Depreciation costs
over a ten year life is, however included in this case. In addition, the

capitalization of a finger joint cutting machine is assumed at this
production volume.

While the lower production rates assume usage of existing GBI plant
facilities, the final case, at a rate of 120 Rotors per year, includes
capital costs for a dedicated production facility with a 20 year life. Also
present in this case are capital costs for higher production tooling with a
10 year life and production molds with a 5 year life.

A summary of plant capital costs for all three cases is provided in Table
XVI.

8.2 Materials and Labor Breakdown

The breakdown of production rotor materials into basic quantities was
accomplished and is summarized in Table XVII. Note that the production
weight of 3991 pounds is less than the prototype weight of 4522 pounds. This
is principally due to reductions in hub reinforcing fiberglass and epoxy,
hub hardware, and the instrumentation package. These reductions are possible
due to an elimination of the need for variable delta-three angle capability,
instrumentation, and flexibility for upwind or downwind configuring.

A similar breakdown of production rotor direct labor hours at a 120
rotors/year production rate was developed and is summarized in Table XVIII.
Certain labor efficiency improvement factors have been utilized in
translating the direct labor component of production rotor costs from the
lowest to the highest production volume case.

Labor costs for the prototype rotor will be significantly higher than for
the 2 rotor/year case. This is not only because of learning curve factors,

but also because the prototype would have multiple configuration capability
and would be fully instrumented.

Total cost figures exclude the cost of teeter hardware which was not
evaluated under this contract. The cost of a wood composite rotor of the
type designed in this effort should be lower, not only than that of rotors
employing other methods of manufacture and material, but also than that of

rotors composed of a metallic hub and wood/composite blades such as in the
case of MOD-OA.
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8.3 Cost Summary

A summary of rotor costs for all three evaluated rotor production per year
cases is presented in Table XIX. These costs range from $25,452 to $38,783
for 120 rotors per year to 2 rotors per year respectively. For the 120
rotors per year production case, the material component of final unit cost
is 26.9 percent while the labor and overhead component is 47.3 percent. A
similar relationship was shown in a previous effort (ref. 11). Cost
reduction efforts would therefore be best served by focusing on reducing
direct labor hours per blade by investing in plant and capital equipment
sufficient to realize substantial labor reductions.

Cost data was based on several years of commercial blade fabrication during
which time GBI built more than 775 blades (or 200,000 pounds of such
structures). Therefore, the figures can be viewed as considerably more
realistic than those generated in previous efforts.

8.4 Cost Reduction and Cost Control

In the process of estimating the 2nd, 10th, and 100th unit rotor costs
(Table XIX), an effort was made to assume the greatest possible labor force
learning and efficiency improvement factors. The result of such an
improvement is a reduction in both the total and proportionate costs of

labor per rotor when going from low volume production rates to producing a
rotor every other work day.

Implementation of such a program would involve two basic elements. First,
all appropriate tooling and equipment was identified to allow production to
move from inefficient, prototype dedicated hardware to more streamlined
production oriented systems. Additional capital costs were assumed for
further production hardware development in support of improvements which,
although not identified, should be anticipated and supported.

Secondly, it is felt that a dynamic philosophy of constant task reassessment
is necessary to further reduce total labor hours per rotor. This can happen
both by better utilization and refinement of existing hardware and by
development of new hardware.

Material cost improvements result from an aggressive competitive purchase

program, judicious inventory control, and an ongoing process improvement
program,

Manufacturing costs are collected and reported in a computer equipped
accounting system so that management, shop supervision, and process

improvement engineers have an up-to-date cost history available in the
ongoing effort to reduce costs.
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9.0 MISCELLANEOUS HARDWARE

Additional hardware which was designed under this contract included special
clamping fixtures and sleeve installation hardware for manufacture of the
prototype rotor. Furthermore, necessary hardware for handling and shipment
of both the partially completed and fully assembled rotor were designed.
Descriptions .of this hardware is provided in this section.

9.1 Prototype Tooling and Fixtures

At an early stage in the manufacture of the composite hub, holes are
machined and the large number of sleeves needed for the load take-off are
bonded into place. Principally the hardware consists of a plate which has
been machined in accordance with the selected fastener pattern. Slip
bushings are inserted into the plate holes to support the hand performed
drilling operation. Finally, slip pins are later imserted into the plate
holes to hold and align the sleeves prior to and during the bonding
operation as shown in Figure 55. A second flat plate is provided to retain
the planar relationship of these slip pins by sandwiching the slip pin
shoulders between the two plates. Four steel hangers attach to the main
plate and serve to position the plate properly with respect to the machined
hub laminate edges. The hardware designed for accomplishing this operation
on the prototype is shown in Figure 56.

The hardware illustrated in Figure 57 serves to provide the necessary tip
end attachment and adjustment of external cables needed during the splice
joint bonding operation described in Section 5.4,

9.2 Handling and Shipping Provisions

General shipping configurations were developed for preliminary rotor
shipment to the finger joint machining subcontractor. Form fitting shipping
cradles were designed for containing the rotor elements during preliminary
shipment and for containing the fully assembled rotor during final shipment.
Provisions are shown in Figure 58 for final rotor shipment.

A modified MOD-OA spreader bar would be used for handling the fully

assembled rotor. For the prototype rotor, it is assumed that this hardware
would be furnished by NASA-LeRC. Use of the bar is shown in Figure 59.
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10.0 SECONDARY TASKS

The contractual effort included tasks unrelated to the rotor design but
supporting the development of advanced wood composite rotor technology. The
work on these tasks is summarized in this section.

10.1 Load Take-Off Stud Test Program

The program included the design of advanced load take-off stud concepts. A
set of designs were proposed which would serve to identify the contribution
of specific design variables to static and fatigue performance. Also the
designs were developed to elevate the overall level of stud performance
relative to previous evaluations (ref. 12). GBI was also tasked under this
contract with the fabrication of up to 92 test samples containing the NASA
selected studs from the proposed designs. The test program is being
conducted by another NASA-LeRC contractor.

From the ten designs proposed, NASA-LeRC made a final selection of eight
stud designs to be manufactured. This selection included five of the
proposed designs, with NASA adding a full-scale MOD-0A, a 3/4 scale MOD-OA
design and a non-tip drilled derivative of one of the first five designs.
Figures 60 and 61 illustrate the eight designs selected for evaluation.

To introduce simulated blade loads into the test studs, a laminated
wood/epoxy composite block was required for bonding of studs. Two test block
designs were specified by NASA-LeRC. These designs are shown in Figure 62.
The test studs were bonded into the test blocks by GBI.

The thrust of the test program has been on an initial evaluation of all
eight designs with larger sample populations finally designated for Designs
4 and 5. Because of the thin wall thicknesses needed in the tip region for
Designs 4 and 5, a number of machining procedure iterations as well as
slight respecification of the designs were necessary to improve delivery
time and reduce the cost of the test studs. Initial performance data
provided by NASA-LeRC indicates that both Design 4 and 5 studs are very
promising for significant gains in static and fatigue performance, as
compared to the MOD-0A blade studs (ref. 12).

10.2 Wood/Epoxy Laminate Test Program

GBI was tasked under the contract to propose to NASA-LeRC a test program for
the evaluation of wood/epoxy laminate and to fabricate the basic laminate
from which fatigue samples would be built by NASA or another contractor.
Following review of the proposal, NASA-LeRC indicated what laminate types
would be required. The fabrication and shipment of these laminate billets
has been completed. The testing of these fatigue samples has been conducted
by another NASA-LeRC contractor.
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10.3 Advanced Wood Composite Technology Tests

GBI was tasked to evaluate several concepts for advancements in wood/epoxy
laminate technology. The first of these concepts was developed in support of
the load take-off stud test program. This involved an evaluation of a scheme
where the basic laminate is augmented with unidirectional graphite fabric to
increase the elastic modulus. Increasing the laminate elastic modulus
reduces the modulus mismatch between the laminate and steel load take-off
studs, thereby reducing the shear stress levels in the epoxy utilized to
transfer load from one material to the other. These reduced stress levels
are expected to be associated with improved levels of fatigue performance
for load take-off studs. Ultimately the concept was shown to be sound. Some
performance degradation was noted at tests conducted near 120 degrees
Fahrenheit. The summary of this evaluation is presented in Appendix D.

The second program was an evaluation of wood/epoxy laminates, with scarf
jointed plies, under compressive static and fatigue loads. The effects of
scarf joint slopes on laminate performance, particularly in fatigue, had not
previously been investigated. Also evaluated was the effect on laminate
performance of non-optimum scarf joints, namely overlaps or gaps, formed

during a manufacturing operation. This test program is summarized in
Appendix E.

11.0 DISCUSSION

A comprehensive review of the Final Rotor Design and secondary tasks
progress was conducted by NASA-LeRC personnel. This section provides a
summary of the work performed under this contract.

11.1 Primary Task

The design of an Advanced Wood Composite Rotor has been completed and
undergone review, by NASA's Lewis Research Center. The design was approved
by NASA on the basis of structural integrity and estimated aerodynamic

performance. The manufacturing plan was considered to be practical and
cost-effective.

The lowest positive design margin was calculated at rotor centerline for the
extreme wind condition (125 mph wind plus gusts). This calculation was based
on conservative laminate strength and hole stress concentration assumptions.
For a production version of the rotor, simplifications of the hub design
should increase the calculated margins.

The design is a 90 foot diameter, 400 kW (max. rated power) rotor, which
weighs 3991 pounds in production configuration (the prototype weight was
calculated to be 4522 pounds). The rotor could be field assembled, however
one piece shipment has been assumed.
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Cost of production units, at a rate of 120 rotors per year, has been
estimated to be $25,452 (1983 dollars). This figure excludes teeter
hardware. A cost per unit weight analysis shows that such a rotor, at $6.38
per pound, is seventeen percent lower in per pound cost than adjusted MOD-OA
blade data (refs. 7 and 11). The economics should become even more
attractive when comparisons on a complete rotor basis would be made.

Miscellaneous design features such as lightning protection, instrumentation
and ice detection provisions were all accepted by NASA at the time of the
Final Design Review. The lightning protection and ice detection provisions
are proven concepts used in previous programs. Shipping and handling
provisions were reviewed and determined by NASA to be practical and in
accordance with previously accepted practice.

Fabrication of the prototype pattern, from which the prototype tooling would
be made, commenced following NASA approval of rotor contour drawings. Work
on the tooling was terminated, following NASA direction to delete
fabrication of the rotor from the program.

11.2 Secondary Tasks
The results of the secondary tasks are summarized in this section.

1. Advanced stud designs were finalized and samples were produced
for testing at a NASA contracted test facility.

2. A wood composite test program was reviewed by NASA and elements
of the program were selected for testing at a NASA contracted test

facility. Wood/Epoxy laminate was produced by GBI in support of this
activity.

3. Test Programs were designed and conducted in support of two
advanced composite concepts. One program was a scheme for augmenting
wood composite with unidirectional graphite. The other involved
compression evaluation of scarf jointed laminate plies. Both
concepts were shown to offer performance benefits, although the
modest amounts of data generated may not sufficiently support the
development of specific design allowables.

4. A test article for fatigue evaluation of full-scale finger joints
was designed and fabricated. The article was tested at a U.S.
Government facility.
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12.0 CONCLUDING REMARKS

The relative simplicity of the rotor structural design and stall-limiting
scheme offers potential savings in capital costs as well as machine
operating and maintenance costs. These savings are expected to be offset to
some degree by lower annual energy capture. Actual data on the resulting

cost of energy would significantly influence future commercial rotor
designs.

The opportunity to enhance the properties of basic wood/epoxy laminate via
high strength fiber augmentation or scarf jointed construction was
demonstrated in the secondary tasks of this contract. Further testing would
serve to refine such advancements and allow for the development of
statistically credible design data.
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TABLE I.- FINAL PROTOTYPE ROTOR DESIGN SPECIFICATIONS

Rated Power(max.),kW
Rotor Diameter, feet

Number of Blades

Blade Twist, Deg Physical
Aerodynamic

Rotor Speed, RPM Nominal
Maximunm

Rotor Location

Rotor Tilt, Deg

Rotor Coning, Deg

Rotor Teetering, Deg

Hub Delta-3 Angle, Degxx

Tip Airfoil Type

Type of Power Control
Normal Shutdown Mode
Emergency Shutdown Mode
Starting Mode
Design Windspeed, mph

Cutout Windspeed, mph

55
60

Upwind or Downwind

Less than 5
0

+-6

+-67.5 in 22.5 increments

NACA 64(3) 6XX

Stall Limited

Yaw Contrbl

Mechanical Brake

Motoring
25

50

* with respect to tower

*#% rotation of teeter axis with respect to rotor spanwise

centerline

TABLE II. - 90-FOOT DIAMETER WOOD ROTOR DESIGN MOMENTS*

STATION FLATWLISE MOMENT, 1b-ft CHORDWISE MOMENT, 1b-ft

(inches) STEADY CYCLIC STEADY CYCLIC
0 -142,400 24,400 -23,600 35,200
45 -123,200 21,800 -26,700 26,300
100 -100,400 18,400 -19,800 19,100
155 -79,000 15,400 -16,300 13,100
210 -59,000 12,400 -13,000 8,700
265 -41,000 9,400 -9,500 5,500
320 -25,200 6,400 -6,300 3,200
375 -13,200 3,800 -3,800 1,600
430 -5,000 1,900 -1,900 700
485 -600 500 -700 150
540 0 0 0 0

*NASA specified at 4 x 108 cycles.
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FABLE 111, - ALADE GEOMETRIC PROPERTIES

Blade Twist: 0°

STATION CHORD THICKNESS THICKNESS/CHORD . SHELL, THICKNESS SHEAR WEB LOCATIONS

{inches) (inches) (inches) (inches) L.E. to Fwd Fate
(inches)
0- 43 51.5 21.88 .381 P35 JNN (——
43 57.5 ' 21.88 .381 2 N
60 58.41 ’ 21.27 364 2.38 - 2.48% | —eee
84 59.85 20.42 L3461 1.18 - 1.28 |  =----
132 63.12 18.72 .297 1.08 - 1.18 24,69
156 63.7 17.87 . 281 1.08 24.00
180 62.2 17.02 L274 .98 - 1.08 23.13
228 57.11 15.33 .268 .88 - .98 21.38
276 52.02 13.65 .262 .88 19.62
324 46.92 11.96 .255 .68 - .78 17.88
372 41.83 10.28 . 246 .98 - .68 16.13
420 36.73 8.59 .234 .58 14.38
468 31.64 6.91 .218 .58 12.63
516 26.55 5.22 197 .58 10.88
540 24.0 43R .182 .58 10.00

*Double numbers indicate a veneer terminates at station.

TABLE 1V. - FLATWISE MARGINS SUMMARY

MARGINS, Percent MINIMUM MARGIN
STATION EXTREME DESIGN MAXIMUM
WIND OPERATING OPERATING ’
(inches) CASE CASE CASE PERCENT CASE
0 3 54 104 3 Extreme Wind
3 7 70 110 7 Extreme Wind
6 15 82 126 15 Extreme Wind
9 31 107 156 3 Extreme Wind
17 156 ' 298 392 156 Extreme Wind
20 159 302 396 159 Extreme Wind
35 179 216 290 179 Extreme Wind
43* 184 218 292 184 Extreme Wind
43% 177 197 266 177 Extreme Wind
60 138 171 232 138 Extreme Wind
84 49 49 83 49 Extreme Wind
132° 41 32 58 32 Design Oper.
156 38 22 47 22 Design Oper.
180 39 19 42 19 Design Oper.
228 43 14 33 14 Design Oper.
276 52 12 28 12 Design Oper.
324 61 . 15 24 15 Design Oper.
372 83 32 27 27 Max Oper.
420 167 84 62 62 Max Oper.
468 410 211 155 155 Max Oper.
516 2661 1130 960 960 Max Oper.
540 o «o oo oo All

#Two different calculations were made at the splice joint centerlime (station 43). The higher margins as indicated
for the inner rotor are due to the use of higher grade unjointed laminate; the lower outer rotor marging are due
to the use of jointed lower grade veneer laminates.
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TABLE V.

- DESICN OPERATING CASE,
175 kW ouTPUT,

25 MPH WIND SPEED

CRICIA

diaa

x)

OF PCOR QUALiTY

FLATWISE SUMMARY

r RATIO DESIGN OPERATING LOAD | FLATWISE CAPABILITY FLATWISE
STATION MIN STRESS ALLOWABLE NASA SPECIFIED AGAINST ALLOWABLE LOAD MARGIN
MAX STRESS 6 6
{inches) (NASA SPECIPIED) (psi) (inch-1bs x 107) (inch-1bs x 107) (percent)
"o .700 2831 2.000 3.286 64
3 .100 2831 1.980 3.359 70
6 .700 2831 1,965 3.582 82
9 .700 2831 1.940 4.021 107
17 .00 2831 1.900 7.559 298
20 . 700 2831 1.880 7.559 302
35 .700 2831 1.795 5.679 216
4%k .700 2774 1.750 5.9564 218
4348 .700 2372 1.750 5.194 197
60 .700 2420 1.650 4.467 171
84 .696 2415 1.520 2.270 49
132 .684 2405 1.245 1.640 32
156 .66 2395 1.130 1.382 22
180 .669 2385 1.005 1.19) 19
228 .649 2355 .770 .876 14
276 .622 2320 .558 .626 12
324 .592 2280 .366 422 15
372 .554 2225 . 206 .272 32
420 474 2135 . 100 . 184 i 84
468 .25 1845 0.034 . 106 211
516 -2 1490 0.004 049 1130
540 -.50* 1310- 0 .029 )
*extrapolated values
4d%gee explanation in Table 1V,
TABLE V1. - COMBINED LOADS STRESS ANALYSES
{175 XW OQutput, 25 MPH Wind Speed, lnxlOs Cycles)
SUMMARY FOR ROTOR CENTERLINE (STATION 0)
(High Pressure Surface)
EXTREME FIBER LOCATION EXTREME FIBER COMBINED EXTREME
DISTANCE FROM] DISTANCE FROM FLATWISE STRESS FIBER STRESS STRESS DESIGN DES1GN
COMPONENT* RATIO ALLOWABLE** MARGIN
LEADING EDGE CHORDLINE
Max Min Max Min (Hln Stress)
{inches) {inches) (pai) (ps1) | (psi) (psi) Max.Stress (pgi) { 3.
0 0 114 60 341 103 0.30 2258 562
i 2.46 325 228 544 250 0.46 2469 354
2 4.63 511 358 . 722 379 0.52 2562 255
3 6.23 649 454 852 474 0.56 2609 206
4 7.44 752 527 947 547 0.58 2644 179
5 8.35 830 581 1017 600 0.59 2668 162
7 9.63 940 658 1112 675 0.61 2703 143
9 10.37 1004 703 1160 719 0.62 2714 134
11 10.70 1032 722 1172 736 0.63 2738 134
13 10.78 1309 916 1433 928 0.65 2761 9
15 10.78 1719 1203 1827 1214 0.66 2784 52
17 10.78 1984 1389 2077 1398 0.67 2796 35
19 10.78 2389 1672 2466 1680 0.68 2808 14
* Based on Stepwise Linear Approximation of Swoothly Varying Stress Field in Region of Low Speed Shaft Hole

#** These Values Have Received An Additional 171 Upgrade From Goodman
Blade Grade 1 Veneer.

Small Structural Volumes Was Not Implemented.
CALCULATION PARAMETERS

FLATWISE NEUTRAL AXIS:

1.33 inches from chordline toward low pressure surface

EDGEWISE NEUTRAL AXIS: 28.75 inches from leading edge

27

Curve Values By Assuming Use of Unjointed,
An Additional Upgrade From Adjusting Allowables In Accordance With Highly Stressed,

Extreme Edgewise Stress
Maximum: pe
Hinimum: 23 psi



TABLE VI1. - COMBINED LOADS STRESS ANALYSIS
(175 kW OUTPUT, 25 MPH WIND SPEED, &4 x IO8 CYCLES)

SUMMARY FOR STATION: 43

EXTREME FIBER LOCATION COMBINED STRESS

l‘l‘l‘é;;;lcﬁ DISTAN(;';—_‘— STRESS RATIO DESICGN DESIGN
FROM L..F. FROM CHORDLINE Max. Min. (!_!_I’_\_.S;[eﬁ) ALLOWABLE MARGIN* )
(inches) (inches) (psi) (psi) Max.Stress, (psi) {percent)

o 0 ~173 - 17 .10 ~1905 1001

1 2.46 -358 ~151 L4l -2181 509

2 5,63 =521 -268 .51 -2256 333

3l 6.23 -639 -354 .55 -2287 258

4 7.44 =727 ~-419 .57 -2304 217

5 8.35 -791 -468 .5% ~2317 193

7 9.63 -878 -536 .61 -2328 165

9 10.37 =924 -575 .62 -2333 153

11 10.70 -937 -592 .63 -2337 149

13 10.78 -931 -595 .63 -2340 151

15 10.78 -919 -594 .64 -2343 155

21 10.79 -884 -591 .66 -2353 166

27 10.79 -848 -588 .69 -2364 179

28.75 10.79 -837 ~586 .70 -2368 183

* These Values Are Downgraded By 2% From Goodman Curve Values Because of Splice Joint Adjustments

Flatwise Neutral Axis:
Edgevise Neutral Axis:

CALCULATION PARAMETERS

Chordline
28.75 in. from Leading Edge

TABLE ViII. - COMBINED LOADS STRESS ANALYSES

8
(175 kW OUTPUT, 25 MPH WIND SPEED, 4 x 10 CYCLES)

EXTREME FLATWISE STRESS

EXTREME EDGEWISE STRESS

Max: -837 psi
Min: -586 psi

SUMMARY FOR STATION: 156

Max: -173 psi
Min: - 17 psi

EXTREME FIBER LOCATION ‘COMBINED STRESS

DISTANCE DISTANCE STRESS RAT1!0- DESTGN DESIGN
FROM L.E. FROM CHORDLINE Max. Min. H_l[l_m) ALLOWABLE MARGIN*:
(inches) {inches) (psi) (psi) Max.Stress. (ps1) {percent)

0 o - 253 - 25 .10 -15944 668

1 3.17 - 938 ~ 493 .52 -2311 146

2 4.36 -1189 - 668 .56 -2340 96

4 5.84 -1495 - 885 .59 -2364 58

7 7.26 ~1780 -1092 .61 -2377 33

13 B.59 -2018 ~1284 .63 -2387 18

19 8.96 ~2048 ~-1333 .65 -2393 16

25 8.73 ~-1946 ~1294 .66 -2400 23

31 8.14 -1765 -1202 .68 -2407 36

37 7.27 -1523 -1068 .70 ~2416 58

43 6.03 -1200 - 880 .73 -2430 102

49 4.53 - 821 - 653 .79 -2459 199

55 2.80 - 392 - 391 1.00 -2578 560

58 1.90 ~ 257 - 168 .65 -2395 1327
EXTREME FLATWISE STRESS EXTREME EDGEWISE STRESS

Flatwise Neutral Axis:
Edgewise Neutral Axis:

Chordline
29.32 in. from Leading Edge
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Max: -1958 psi
Min: -1324 psi

Max: -253 psi
Min: - 25 pai




OF POOR QUALITY

TABLE IX. - MAXIMUM OPERATING CASE
400 kW OUTPUT, 33 MPH WIND SPEED

r RATIO
STATION MIN_STRESS ALLOWABLE MAX OPERATING LOAD | FLATWISE CAPABILITY FLATWISE
MAX STRESS AGAINST ALLOWABLE LOAD MARGIN
(inches) NASA SPECIFIED ®sl) (Inch-1bs x 10%) (inch-1bs x 100) (percent)
0 . 700 4210 2.398 4.887 104
3 .700 4210 2.378 4.996 110
6 . 700 4210 2.358 5.327 126
9 .700 4210 2.338 5.979 156
17 .700 4210 2.285 11.241) 392
20 .700 4210 2.265 11.241 396
35 .700 4210 2.165 B.445 290
43 % .700 4126 2.112 8.276 292
43 *# .700 3526 2.112 7.721 266
60 .700 3598 2.000 6.641 232
84 .696 3583 1.843 3.368 83
132 .684 3561 1.536 2.428 58
156 .676 3542 1.388 2.044 47
180 .669 3518 1.263 1.760 42
228 .649 3468 0.970 1.289 33
276 .622 3406 0.720 0.919 28
124 .592 3330 0.499 0.617 2
372 .554 3240 0.312 0.396 27
420 474 3077 0. 164 0.266 62
468 . 250 2700 0.0606 0.155 155
516 ~.200* 2032 0.00633 0.067 960
540 -.50 * 1775 0 0.040 ©

*extrapolated values
**see explanation in Table 1V.

TABLE X. - EXTREME WIND LOAD CASE

701871t Airload

(S(J‘ll/ft2 x 1.4 Instantaneous Peak Dynamics Multiplier)

STATION ALLOWABLE EXTREME WIND LOAD CAPABILITY AGAINST FLATWISE
6 ALLOWABLE" LOAD MARGIN
(inches) (23] (inch-1bs x 10) (inch-1lbs x 10) (percent)
(1} 3612 3.060 3.145 3
3 3612 3.018 3.215 ?
6 3612 2.978 3.428 15
9 3612 2.937 3.848 31
17 3612 2.831 1.233 156
20 3612 2.790 7.233 159
35 3612 2.600 7.242 179
43 3540 2.500 7.098 184
43 3160 2.500 6.916 177
60 3225 2.27 5.951 138
84 3225 2.031 3.018 49
132 3225 1.558 2.192 41
156 3225 1.349 1.859 38
180 3225 1.159 1.605 39
228 3225 0.8303 i.188 43
276 3225 0.5657 0.857 52
324 3225 0,3594 0.580 61
372 3225 0.2058 0.377 83
420 3225 0.0990 0.264 167
468 3225 0.0335 0.171 410
516 3225 0.00349 0.096 2661
540 3225 0 0.064 ®

*gee explanation in Table 1V,
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TABLE XI. - FLATWISE BUCKLING MARGINS

- FLATWISE
STATION EXTREME WIND  [DESIGN OPERATING MAX OPERATING BUCKLING MINTMUM
(PEAK pei PEAK psi (PZAK psi STRENGTH . MARGIN
(inches) IN SHELL IN SHELL IN SHELL (psi) : (percent)
43 1142 800 965 12569 1000
60 1231 894 1084 10999 794
84 2170 1617 1961 5441 151
132 2292 1826 2252 5447 138
156 2341 1958 2405 5595 133
180 2329 2009 2484 5595 125
228 2255 2071 2609 5582 114
276 2128 2068 2668 5516 107
324 1999 1975 2693 5433 102
372 1761 1686 2554 5394 111
420 1208 1158 1899 6374 236
468 633 594 1058 7759 633
516 117 121 192 10519 5379
540 0 [ 0 12049 ®
TABLE X1i. - EDGEWISE MOMENT LOAD MARGINS
STATION STRESS ALLOWARLE PEAK EDGEWISE LOAD EDGEWLSE CAPARTLITY EDGEWISE
: 6 AGAINST ALLOWABLE LOAD MARGIN
(inches) RATIO (pst) (psi x 107) - 6
(inch-1bs x 107) (percent)
0 0.1 1989 L7656 6.717 177
43 0.1 1666 .636 6.13 865
156 0.1 1700 JIS2R 2.361 569
TABLE X111, - INNER ROTOR PHYSICAL PROPERTLES
STATION WEIGHT/FT  [€G LOCATION | EDGEWISE 1 FLATWISE Fl EDGERISF* FLATWISE*
(inches) (1hs) (7 of chord) | (tbs-in2) (bs-in’) CAPARTLITY ) CAPABILITY
Gineh-Ths x 10" {(inch-1bs x 10%)
0 128.7 50 274,064 45,510 15.269 3145
3 3.6 50 274,202 Ah.94R 15.118 3.215
6 141.6 50 276.455 AT 200 15.524 3.428
9 175.0 50 276974 48,818 19, 704 1.848
17 186.6 50 275. V58 B A0 15,728 7.2%3
0 186.6 50 275358 57409 15.728 7.233
35 122.5 50 213555 AR .IR? 12. 198 7.242
43 122.5 50 213.555 48. 1R? 12,108 7.242
*Capabilities calculated against S-minute duration loading (extreme wind) 612 psi allowable g o n T RO
glass augmentation credit not Laken. carbon fiber hole lincr credit not taken R“EGLL"-I‘L ?:“f}—n’f‘- 2
TABLE XIV. - OUTER ROTOR PUYSICAI, PROPERTIES
STATION WEIGHT/FT CG LOCATION (AR EDGEWISE E1 FLATWISE EI EDGEWISE* FLATWISEA *
2 9 2 ")9 lbs-lnzx“)() CAPABILITY CAPABILITY 6
(inches) (1bs) (2 of chord)] Ibs-in“x10 1bg-in"x . d (1n-1bs x 106) (1n-1bs x 10%)
43 100.8 50.0 10.54 211.90 47.89 11.639 6.916
60 92.1 49.5 9.000 197.19 39.86 10.586 5.95t
B84 52.3 48.5 4.804 108.40 19.86 5.459 3.018
132 49.4 47.2 3.129 103.56 13.28 4.816 2.192
156 41.2 46.9 2.470 97.908 10.74 4.480 1.859
180 45.0 47.0 2.055 89.720 8.933 4.194 1.605
228 37.3 47.3 1.414 61.267 5.960 3.122 1.188
276 30.9 47.2 .91888 41,295 3.808 2.288 .857
324 25.1 47.0 .56863 26.741 2.317 1.619 .580
372 19.6 47.4 .33308 15.775 1.309 1.069 377
420 16.0 47.5 .18615 9.6436 L7239 .806 . 264
468 13.6 41.7 09719 5.9425 .3790 .578 171
516 1n.2 41.7 .04128 3.3487 L1641 .388 .096
540 9.9 47.2 .02318 2.3586 .09069 .299 . 064

ffness
,.:, z:;:é:;‘iti::icalculﬂted against 5-minute duration loading (extreme wind) 3225 psi allowable
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TABLE XV. - MISCELLANEOUS ROTOR PROPERTIES

NATURAL FREQUENCIES (HERTZ)

With Centrifugal Without Centrifugal
Stiffening Stiffening
Flatwise 3.80 ( 4.15P) 3.64 ( 3.97P)
Edgewise 10.42 (11.37p) 10.36 (11.30P)

TIP DEFLECTION: 16.1 inches (70.1 1b/ft2 wind loading)

5
ROTATIONAL MOMENT OF INERTIA: 4.80 x 10 1b-in-sec?

WEIGHTS:

Hub Weight 1679.5 1bs
Hub CG STA O

Outer Blade Weight 1421 1bs
Quter Blade CG STA 174

TOTAL ROTOR WEIGHT 4521.5 1bs

TABLE XVI. ~ PLANT CAPITAL COSTS (mid 1983 K$)

North of Bay City Agrarian Plant Site

I. 2 ROTOR/YEAR PRODUCTION (Assume Use of Prototype Equipment)
No Additional Equipment

II. 10 ROTOR/YEAR PRODUCTION RATE (Assume Use of Prototype Equipment)
itiona ipment* 200

QTS year ii?gg P _—

TOTAL 200

Depreciation as straight line at 10 units per year

ITII. 120 ROTOR/YEAR PRODUCTION RATE

Plant (20 year life) 1440
Tooling (10 year 1ife) 790
Molds (5 year life) _180

TOTAL 2410

Depreciation as straight line at 120 units per year

*Includes finger joint cutter
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Figure 7. - Fixed Teeter Axis Hub Concept - Upwind
Configuration, Exploded Schematic
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Figure 8.~ Variable Delta-Three Angle Hub Concept - Upwind
Configuration, Exploded Schematic
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13.0 APPENDIX A - Teetered Hub Principal Stud Load Analysis

Assumptions:
1) 90 foot diameter rotor/400kW output
2) Gear box/generator efficiency of 0.85
3) Four inner row studs 11.5 inches from centerline, four middle row
studs 14.75 inches from centerline, and four outer row studs 18.0
inches from centerline (two inner, two middle, and two outer studs

on each bearing base - two such bases)

4) 55 rpm machine speed

5) Each inner row stud is (11.5/18)2 as effective at transmitting
torque as each outer row stud. Each middle row stud is (14.75/18)2
as effective at transmitting torque as each outer row stud. This

conservatively assumes that the load on any stud will increase
linearly as its distance from the centerline increases.

Calculation:

Power at shaft (Hp) = 400 Kw x 1.34 (Hp/Kw)/0.85 (system efficiency)
= 631 Hp

Operating torque (in-1lbs) = 63030 x Hp/rpm = 63030 x 631/55 =
723,126 in-1bs

The four inner studs are equal to 4 x (11.5/18)2 or 1.633 of the
outer studs

The four middle studs are equal to 4 x (14.75/18)2 or 2.686 of the
outer studs

Total equivalent number of outer studs = 1,633 + 2.686 + 4 = 8,319

Shear load carried by each outer stud (1bs) = 723,193 in-1bs/(8.319
studs x 18 inches) = 4830 1lbs.
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14.0 APPENDIX B - Summary of Aerodynamic
Tip Brake Design Concepts

Background

Contract DEN3-260 has supported work to develop a reliable aerodynamic brake
as a secondary system for the 90-foot diameter rotor. The secondary system
could control rotor over speed in the event the generator drops off line and
the primary brake system fails.

Two tip brake designs were presented by Gougeon Brothers, Inc. (GBI) to NASA
at the Conceptual Design Review (CDR). The primary design at that time was
Concept A which is described below. The second design was a balanced winglet
brake which could provide problems in manufacturing and with respect to
tower clearance. At the CDR, NASA directed the contractor to do no further
work on the balanced winglet brake concept.

The following narrative describes Concept A and two additional conceptual
designs (Concepts B and C) proposed at the conclusion of the Rotor
Preliminary Design phase. Figure 63 illustrates the three concepts.

Concept A

Concept A is a power modulating tip brake which deploys by pitching as it
translates along the rotor spanwise axis. The pivot axis of this design is

35 percent of chord aft of the leading edge and the tip pitches nose down
during deployment.

The pivot shaft is secured to the actuating tip. Located on this shaft is an

adjustable stop collar and a compression spring that seats against the
outboard bearing case.

The inboard bearing is a non-metallic, low-friction, bushing which is bonded
into the blade. The outer bearing is a helical roller bearing that reacts
against raised followers on the pivot shaft. This bearing is slip fit into

the rotor and secured in place with machine screws around the perimeter of
the flange.

Pre-compression of the spring holds the tip and shaft in proper operating
orientation during normal machine operation. In the event of some specific
rotational rotor over speed, the centrifugal load of the tip and shaft begin
to overpower the spring which in turn allows spanwise translation of the
tip. As the tip translates, the helical bearing and follower produce a nose
down rotation of the tip, thereby decreasing 1lift and eventually increasing
drag. The tip will further deploy should the rotor continue to increase its
rotational speed, effectively controlling the rotor from a runaway over
speed.
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This tip design will modulate itself to match fluctuating power in the rotor
during an emergency situation. Concept A was riot developed to completely
stop the rotor. It will only limit maximum rotor rotational speed during a
potential emergency over speed condition.

Disassembly of this tip brake would be accomplished by removing the machine
screws from the outer bearing flange and sliding the outer bearing, tip,
shaft, spring and stop collar out of the blade as a unit. Any ad justment to

the pre-compression of the spring can be done with this complete assembly
removed from the blade,

There is concern that the compression spring for this design may not be
practical. In order to react the weight of the tip and pivot shaft in a
40-50 G field, a high spring preload is required while maintaining a
sufficiently low spring constant to allow the proper amount of linear
translation of the tip (approximately 4 inches minimum) during a 10 percent
over speed. Centrifugal load varies as the square of rotation speed, so a 10
percent over speed would equate to an incremental force of 21 percent on the
spring to provide adequate translation. There might not be enough internal
volume at the tip brake's junction to properly incorporate such a spring.
Also, the outer bearing would likely not be an off the shelf item, since it
has to combine rotary and linear motion via a helical spline.

Concept B

In order to simplify the bearing and spring design for the pitching tip
brake, an alternative concept (Concept B) was developed. This design does
not translate along the rotor spanwise axis, therefore allowing a simple
roller design to be incorporated for the outer bearing. This outer bearing
would slip fit into the rotor and be held in position by means of a bearing
flange and machine screws.

The inboard bearing can, as with Concept A, be a low friction, nonmetallic
bushing that is bonded into the rotor. The pivot shaft for this design is
located at 35 percent chord aft of the leading edge and is bonded into the
tip. A spanwise translating slide weight, which is restricted from rotary
movement, features a helical guide that reacts against a raised follower on
the pivot shaft. A precompressed spring that bears against the outer bearing
shell holds the slide weight in proper position during normal operation of
the rotor. If a rotor rotational over speed condition develops, centrifugal
force on the slider weight increases, overcoming the spring force, and
allowing outboard translation of the slider weight. This translation causes
the tip to pitch nose down due to the helical spline and follower.

The tip is initially balanced aerodynamically, but as the tip rotates far
enough for stall to begin, the resultant drag vector reacts further and
further back on the foil such that a higher torque will be required to hold
the tip at 90 degrees to the apparent wind. Fast initial rotation with a
final high braking torque can be accomplished with a progressively steeper
helix angle inside the slide weight. If the machine speed increases, the
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slide will translate further spanwise and cause increased rotation of the
tip, thereby preventing a runaway rotor. Similar to Concept A, Concept B
will only regulate the rotor at a given RPM during an over speed condition.
It will not bring the rotor to a stop.

Disassembly of the unit can be accomplished by removing the machine screws
from the outboard bearing flange and sliding the entire unit from the rotor.
An adjustable stop for the spring can be used to facilitate fine tuning the
specific rotor rotational speed at which the tip will begin deployment. This
ad justment can be done while the unit is removed from the rotor.

The bearings for this design should be off the shelf items. However, the
slide weight will be a specialized part to design and manufacture. The
spring sizing becomes much more reasonable than that for Concept A since
only the weight of the slide must be reacted as opposed to the weight of the
tip and shaft as in Concept A. The spring pre-load will still be larger than

the normal centrifugal force below some specified deployment initiating
rotational speed.

Concept C

A third concept (Concept C) was developed to alleviate the more complex
bearing and spring requirements of Concepts A and B. This concept is termed
a "one shot" unbalanced pitching tip brake. It differs from the previous two
in that once deployment is initiated, full tip rotation takes place and is
held until the rotor rotational speed approaches zero.

This style of brake is particularly attractive because once the tip brake
commences deployment the generator has dropped off line and the primary
rotor brake system has failed to function properly. This concept serves to
significantly reduce the rotor's rotational speed rather than avoiding
runaway as in Concepts A and B. In addition, before the rotor would again be
operational, Concept C would require service personnel to manually reset the
brake. This may be sound practice because, to experience emergency tip brake
deployment, difficulties with the wind turbine generator system have
developed and merit be checking before the machine is again started.

Both inboard and outboard bearings can be a low friction, non-metallic
bushing type. The outboard bearing is slip fit into the blade and fastened

with machine screws through a bearing flange. The inboard bearing is bonded
into the rotor.

The pivot shaft is bonded to the tip and is located at 50 percent chord aft
of the leading edge at the tip-rotor junction. The shaft is oriented
parallel to the leading edge of the rotor causing the center of area to be
located ahead of the pivot axis. Located on the shaft just inboard of the
outer bearing would be a torsion spring that will hold the tip in the 90
degree, fully deployed, position and help stabilize the tip while the rotor
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speed is‘decreasing or when it is at a stop. Incorporated in the same area
of the shaft would be a rotary damper to reduce the full deployment loads of
the tip.

As the rotor rotational speed reaches a pre-set limit, the centrifugal latch
mechanism releases, allowing aerodynamic forces and the torsion spring to
rotate and hold the tip in a 90 degree orientation. The rotor rotational
speed would then decrease.

Disassembly is accomplished in a manner similar to Concepts A and B in that
machine screws are removed from the flange of the outboard bearing and the
entire unit can slide out of the rotor. The centrifugal latch should also be

easily removable and could be adjusted for proper deployment load while
removed.

With the pivot shaft located at 50 percent chord, there is less internal
volume available for the necessary mechanisms. However, with the simplicity
of this design available volume should not present significant problems.
Should design efforts continue on tip brakes, there are several variations
of the damper and latch mechanisms for Concept C that could be even more
simple and reliable in long-term adverse conditions.

Summary

The length of these brakes has been consistently determined assuming only
one tip would deploy. This conservative approach drives both the length of
the tip and the size of the actuating mechanisms up considerably,

However, it has been recognized that if only one tip were to deploy, a large
rotor thrust load imbalance would result, causing excessive teeter forces,
therefore it might be more practical to develop a fail safe system whereby
both tips deploy together. A method of interconnecting the release
mechanisms in Design C by means of a cable could result in near simultaneous
deployment. This would allow the length of the tip to decrease to 48 inches
as opposed to the 102 inch length originally sized. A design such as Concept
C, incorporating the interconnecting latch mechanisms, might approach a
level of reliability such that the 48 inch tip length could be used. This
would serve to minimize the complexity and weight penalty of an aerodynamic
tip brake assembly.
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15.0 APPENDIX C - Rotor Design Allowables Analysis

Introduction

The development of a complete set of fatigue and static wood/epoxy laminate
capabilities, or design allowables, was completed within this contractual
effort. Materials test data utilized as a basis for deriving allowables,
were generally taken from the MOD-5A rotor materials test program.

Several general concepts have been applied in the adjustment of mean test
data values to a final set of design allowables for the specific rotor
design developed in this effort. Clarification of these concepts will aid in
understanding the allowables computations in the following sections.

Fatigue data generated under the MOD-5A rotor materials test program did not
extend beyond ten million cycles and revealed no 'endurance limit.' Log-log
plots of maximum cyclic stress against accumulated cycle data were
mathematically curve fitted using the least squares linear regression
technique as shown in Figure 64. The resulting empirical description of the
material's fatigue behavior was used to extrapolate maximum cyclic stress
levels to cycle counts beyond those which were tested. This approach yields
values which may be conservative from the point of view that at some unknown
non-zero stress level, an essentially infinite fatigue life may exist. The
linear regression curve used however, maintains a constant negative slope,
generating stress values which may be increasingly conservative as the

extrapolation extends beyond the actual test data. Figure 64 illustrates
this relationship.

TEST DATA
+ +§_

+ ¢ PO IBLE. FATIGUE CURVE

™ WITH ENDURANCE LIMIT

~
EXTRAFOLATED VALUES > DIFFERENCE YELTS

MATHEMATICALLY =~ CONSERVATIVE STRES

LG o [ACCUMULATEY CYZLES)

Cyeue STRESS ]

LOG e [MAXIMUM

Figure 64. - Possible vs. Mathematical/Empirical Fatigue Curve

Although the same species (Douglas fir) and visual grade of veneer was used
throughout the MOD-5A rotor materials test program, two different stress
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grades of veneer were used. The difference between these two grades, namely
Blade Grade 1 (BGl) and Blade Grade 2 (BG2), stems from a determination of
the stress wave propagation time in each veneer sheet, during processing,
using automated stress wave timing technology. Stress wave propagation times
generally correlate inversely with properties such as elastic modulus and
strength. Specifications for BGl and BG2 veneer are contained within GBI
Materials Specification GMS-001. Basically, BGl graded veneers are those
yielding stress wave times below a prescribed threshold while BG2 graded
veneers are those yielding stress wave times within a range directly above
the threshold of BGl veneers. Veneers yielding stress wave times above the
upper limit of the BG2 range are rejected for wind turbine application as
their strength and modulus values are generally too low to be desirable for
a stress critical application of this nature.

Some testing was conducted under the MOD-5A materials test program which
permits correlation of BGl and BG2 veneer based laminate performance. The
calculated correlation factors have been used, when necessary, to adjust one

veneer grade data base to design allowables which assume use of the other
veneer grade.

A statistical evaluation of MOD-5A materials test data scatter was conducted
to determine bounds of lowest expected performance. The product of the
standard deviation (&), multiplied by two, was used to establish a 95
percent confidence lower bound.

Generally, the static and fatigue performance of wood and wood fiber
materials are known to decrease as the fiber moisture content increases.
MOD-5A materials test data was normalized to 12 percent wood moisture
content (wmc) using an equation developed by the Forest Products Laboratory
(Madison, Wisconsin; ref. 8). That equation was developed for the adjustment
of static values but it was found, within the MOD-5A materials test program,
that it performed a very commendable job of reducing the scatter of plotted,
non-moisture content normalized fatigue data. The 12 percent normalizing
value was selected because it is a standard choice in the wood industry and
it is also expected to be the highest moisture content level experienced by
a wood/epoxy rotor in any normal operating environment.

The static and fatigue performance of wood-based laminates are somewhat
sensitive to temperature over the range a rotor is expected to encounter.
Higher ambient temperatures will degrade static and fatigue capabilities of
the laminate, particularly in compression. Therefore, a temperature spectrum
ad justment factor has been used in the computation of design allowables.

Duration of load, or creep, is another effect which existing literature
shows to be significant in wood fiber-based structures. Wood fiber exhibits
better static and fatigue capability against loads imposed over shorter
(single or accumulated cycle) spans of time. Adjustments for this effect
have been made on the design allowables, which thereby account for the
influence of extended duration loads.
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The effect whereby material performance decreases as a stressed volume
increases was also studied and shown to be significant for wood/epoxy
laminates under the MOD-5A materials test program. Analysis of the data
allowed the derivation of empirical static and fatigue scale effect
equations. These equations were applied to determine adjustments to design
allowables relative to the specific volume of structural material within
this rotor design.

With this introduction of rotor design allowables concepts complete,
presentations shall be made in the following sections detailing the
computation of all relevant final design allowables. Stress ratio (R) refers
to the ratio of minimum stress to maximum stress, during cyclic fatigue.
Consistency with the development of MOD-5A design allowables exists
throughout the following calculations although some design specific

ad justment factors have been appropriately applied. Finally, note that all
allowables are strictly developed for the parallel to wood fiber direction.
In the outer rotor, the design is similar to previous designs where
secondary force flows (crossgrain) are known not to be limiting factors in
the design. For this rotor, secondary force flows are recognized as an
influence on the design, strictly in the hub, due to the large cutouts for

the low speed shaft and are treated by the use of bidirectional fiberglass
augmentation of the hub laminate.

R = +1 (Steady Load) Tension Fatigue Allowable

Analysis
The MOD-5A static tension size effect testing included many butt jointed

laminate samples. Analysis of the BGl butt-jointed laminate data suggested a
static tension scale effect line of the form:

Mean Tensile Strength = 13500 x Volume -05815
where strength is in psi and volume is in cubic inches.
For a characteristic (equivalent stress) volume of 6250 cubic inches
(cu.in.), the computed tensile strength is:
13500 x 6250—05815 = 8121 psi

The 90 foot rotor characteristic volume is taken to be 1 percent of the
total enclosed volume within the rotor shell, as was done for MOD-5A.

A BGl to BG2 veneer adjustment is needed because the outer rotor will use
BG2 veneer. This adjustment factor is the ratio of the MOD-5A material test
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results for BG2 veneer with 3 inch staggerred butt joints (8534 psi) to the
results for BGl veneer with 3 inch staggerred butts (10183 psi).

The 20 adjustment (.84), temperature spectrum adjustment (.975), and

duration of load adjustment (.53) are the same as used in the derivation of
the MOD-5A allowables. 14 years is 4 x 108 cycles at 55 rpm.

Calculation

Mean Tensile Strength at 127 wmc
(BGl laminate, 3 inch staggerred butt

joints, 6250 cu.in. volume) =8121 psi
BGl to BG2 adjustment .838
20 adjustment .84
Temperature spectrum adjustment .975
Duration of load adjustment .53

R = +1 Tension Fatigue Allowable =2954 psi

Summary
R = +1 Tension Fatigue Allowable
2954 psi
mean - 20, 6250 cu.in., 127 wmc
BG2 veneer, temperature spectrum, l4 year duration
R = 0.1 Tension Fatigue Allowable
Analysis

The mean peak tensile stress at 106 cycles (6369 psi), the exponent (B) for
the strength vs. cycles curve (-.0897), the mean peak temsile stress at 4 x
108 cycles are all taken from available MOD-5A materials test data. The data
is for a mixed group of BG2 and BGl test results with 16 samples total. The
samples feature a cylindrical cross section with a 32 cu.in. test volume
with three butt joints staggered 3 inches in the inner three laminations. No
attempt was made to remove the BGl data or to compensate for its presence
because the two data groups overlay each other rather well. Additionally,
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the results are known to include a conservative factor in that there is
about twice too much butt joint in the sample volume compared to normal
rotor laminate.

The size effect volume exponent (-.09583) is based on a comparison of the
MOD-5A large scale tension fatigue test results with the smaller scale
tension fatigue results.

The 10Z wmc to 12% wmc correction is necessary because the initial MOD-5A
data is based on a 10% wmc level, The adjustment factor used (.969) is the
standard moisture correction for static tension as derived by the FPL.

The 20 correction (.84), and temperature spectrum adjustment (.975) are the
same values used in the derivation of the MOD-5A allowables.

Calculation

Mean Peak Tensile Stress at 106 cycles, 10% wmc =6369 psi

106 to 4 x 108 cycle adjustment (400B) .5842
Mean Peak Tensile Stress at 4 x 108 cycles,

10% wmc =3721 psi
20 adjustment .84
10Z wmc to 12% wmc adjustment .969
Size effect adjustment {6250/32)~-09883 .595
Temperature spectrum adjustment .975

R = 0.1 Tension Fatigue Allowable =1757 psi

Summary

R = 0.1 Tension Fatigue Allowable
1757 psi

mean - 20, 6250 cu.in., 12% wmc
BG2 veneer, temperature spectrum, 4 x 108 cycles
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R = -1 (Fully Reversed), Fatigue Allowable

Analysis

The mean peak stress at 106 and 4 x 108 cycles, the exponent B, and the 957
confidence lower bound are taken from available MOD-5A materials test data.
The 10% wmc to 12% wmc adjustment (.897) is the standard FPL derived
moisture correction for static compression. The size effect exponent
(-.05815) is the same as used for static tension. The 65 cu.in. volume
attributed to the test samples is to adjust for the ratio of butt joints per
unit volume in the test volume versus the rotor laminate volume (ie. it is
the volume of rotor laminate which has the same amount of butt joint as did
the test pieces). The BGl to BG2 veneer adjustment is the ratio of MOD-5A
butt jointed compression results corrected to 127 wmc for BG2 veneer (6452
psi) to the similar results for BGl veneer (6968 psi). The 20 adjustment
(.84) and the temperature spectrum adjustment (.94) are identical to those
used in the derivation of the MOD-5A allowables.

Calculation

Mean Peak Fully Reversed Strength at

106 cycles, 10%Z wmc =3415 psi
106 to 4 x 108 cycle adjustment .599
Mean Peak Fully Reversed Strength at

4 x 108 cycles, 107 wmc =2045 psi
20 ad justment .84
10% wmc to 127 wmc adjustment .897
Size effect adjustment (6250/65) 05815 .767
Temperature spectrum ad justment .94

BG1 to BG2 veneer adjustment (6452/6968) .926

R = -1 (Fully Reversed), Fatigue Allowable =1029 psi

Summary

R = -1 (Fully Reversed), Fatigue Allowable
1029 psi

mean — 20, 6250 cu.in., 127 wmc
BG2 veneer, temperature spectrum, 4 x 108 cycles
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R = 0.1 Compression Fatigue Allowable

Analysis

The mean peak compressive stress at 106 cycles (5586 psi), the exponent B
(-.0590), and the 95% confidence lower bound are taken from the MOD-5A
materials test data. The 107 wmc to 127 wmc correction (.897) is the
standard FPL derived method for static compression. The size effect exponent
(-.0075) is the same as used in derivation of the MOD-5A allowables. The
conservative 32 cu.in. volume for the test samples is again used to balance
the fact that a BG1/BG2 mix is present in the data base. As was the case for
the tension-tension fatigue data, the two data sets are reasonably well
interspersed and no attempt was made to explicitly remove the BGl data. The
duration adjustment is taken to reflect the fact that an 8 Hertz (Hz)
compression test to 4 x 108 cycles would take 13,900 hours (8 Hz was the
test rate), but a 4 x 108 cycle design life is 13.8 years at 55 rpm. The
duration correction for 13.8 years is virtually identical to that for 20
years, so the MOD-5A factor of .755 is applied.

The 20 adjustment (.84) and temperature spectrum ad justment (.9) are
identical to those used in the derivation of the MOD-5A allowables.

Calculations

Mean Peak Compressive Stress at 106 cycles,

10Z wmc =5586 psi
106 to 4 x 108 cycle adjustment (400B) ,7022
Mean Peak Compressive Stress at 4 x 108 cycles,

10Z wmc =3923 psi
20 ad justment .84

10% wmc to 12% wmc adjustment .897
Size effect adjustment (6250/32)-0075 .961
Temperature spectrum adjustment .900
Duration of load adjustment

(13900 hours to 20 years) .755

R = 0.1, Compression Fatigue Allowable =1930 psi
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Summary

R = 0.1 Compression Fatigue Allowable
1930 psi

_ mean - 20, 6250 cu.in., 12% wmc
BG2 veneer, temperature spectrum, 4 x 108 cycles

R = +1 (Steady Load), Compression Fatigue Allowable

Analysis

The mean compressive strength value is taken from the MOD-5A material test
data corrected to 127 wmc. The standard .84 adjustment factor for 20 is

applied and is nearly identical to the calculated 20 factor for the data set
(.834).

The duration of load adjustment (.53) from 5 minutes to 14 years and the
temperature spectrum adjustment (.90) are identical to those used in the
derivation of the MOD-5A allowables.

Calculation
Mean Static Compressive Strength at 127 wmc =6452 psi
20 ad justment .84

Size effect adjustment

(none for compression, R=+1) 1.00
Temperature spectrum adjustment .90
Duration of load adjustment .53

R = +1 (Steady Load), Compression Fatigue Allowable =2585 psi

Summary

R = 41 (Steady Load), Compression Fatigue Allowable
2585 psi

mean - 20, 6250 cu.in.,12% wmc
BG2 veneer, temperature spectrum, l4 years
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Goodman Diagram, 4 x 108 Cycles

The graph in Figure 65 is the Goodman diagram which results when the
preceding allowables are plotted. The curve is skewed a little toward the
compression side by the explicit treatment of scale effect, which is
currently assumed to have its maximum depressive effect upon tension-tension
allowables in the vicinity of R = 0.1. This causes the tension side of the
diagram to be relatively linear, and the performance advantage of tension
relative to compression observed in laboratory sized samples no longer
exists. On the whole, the diagram is relatively symmetrical and the tension
and compression sides of the rotor can be stressed about equally. It appears
that using equal thickness for high and low pressure shells is a reasonable
procedure for wood/epoxy rotors of intermediate (MOD-0) size.
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Fatigue Allowables for 107 Cycle Loading

As an additional design check, the fatigue capability of the design was
evaluated against a set of elevated loads which reflect a maximum operating
load condition. It is clear that such loads will only be present
occasionally because they represent an elevated wind condition of roughly 33
mph. Therefore it would be inappropriate to use the 4 x 108 cycle allowable
in evaluating performance for this infrequent high load condition. A second
Goodman diagram for 107 cycles was therefore developed for this elevated
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load case. The 107 cycle choice is equivalent to about 3000 hours at 55 rpm,
or roughly 1/3 of a year. That is far more than the prototype rotor will
experience on the NASA MOD-O machine at Plumbrook, Ohio (as is 4 x 108
cycles at normal operating loads). The elevated load, 107 cycle level was
chosen as representative of what a commercial rotor might see in a lifetime
of operation, consistent with choosing 4 x 108 cycles to represent a
lifetime of normal operating loads.

Ad justment to the 107 cycle level is straightforward, only the load duration
ad justment or cycle adjustment shown in the previous sections need be

changed. A summary of the changes and results is shown in the following
table.

3000 hr 106 to 107 Ad justed

Loading Duration Cycle Allowable
Condition Factor Factor Stress, psi
R = +1 Tension .805 1.0 4487
R = .1 Tension 1.0 .813 2446
R = -1 Reversed 1.0 .821 1410
R = .1 Compression .936% .873 2975
R = +1 Compression .805 1.0 3926

77 347 hour duration factor

¥ ,936 = ~m= = ———
.830 3000 hour duration factor

where 347 hours is 107 cycles at 8 Hz as actually tested, and 3000
hours is 107 cycles at 55 rpm as machine would operate

Goodman Diagram, 107 and 4 x 108 Cycles

Figure 66 is a Goodman Diagram which shows the allowable stress curves for
both the normal operating load case of 4 x 108 cycles (20 years) and the
maximum operating load case of 107 cycles (3000 hours). A substantial
increase in allowable stress for the reduced cycle case is evident, as
would be expected.
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The basic character of the curve is the same in both cases, with compression

showing slightly higher allowable stresses, except near R = +1, where
tension is favored.

Allowables Upgrade for BGl Unjointed Hub Material

As part of the MOD-5A fatigue allowables development, a comparison was made
between butt jointed fatigue results and those for scarf jointed laminates.
Comparing performance at 106 cycles, so that uncertainties associated with

extrapolating outside the test data range are eliminated, we find:

Number Mean Peak
of Data Stress at

Data Type Points 106 Cycles, psi Improvement
Tension-Tension
Butt Joints/BGl & BG2 16 6373
+217
Scarf Joints/BGl 5 7716
Fully Reversed
Butt Joints/BGl 10 3415)
+147
Scarf Joints/BGl 9 3897
Compression-Compression
Butt Joints/BGl 17 5997%
+137
Scarf Joints/BGl 7 6767%)

*Comparison conducted at 3 x 105 cycles because of high cycle data
anomalies in the scarf data set

It should be noted that the data sets for tension-tension and
compression-compression scarfs are small (5 points and 7 points
respectively) and thus the associated improvement percentages have a rather
large uncertainty and should be used with care. Much of the following
discussion is devoted to trying to draw reasonable conclusions from
sometimes rather sparse or anomalous data sets. The reader who does not
really need or desire that level of detail can save considerable effort by
skipping ahead to the overall conclusion relative to the Goodman Diagram
Upgrade. This conclusion is presented on page 98.

As mentioned in developing the butt jointed material allowables, the butt
jointed test samples had twice the amount of butt joints of bulk rotor
laminate, per unit volume. A volume correction factor is easily applied to

C -
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the above improvement percentages to approximately account for volume

differences, and the results of such a correction are shown in the next
table.

Scarf vs. Butt Improvement

Test Type Volume Adjustment B Unad justed Adjusted ]
Tension~-Tension 27.09853 - .93 (-7%) 21% 14%
Fully Reversed 2—.08815 = 96 (-47) 14% 10%
Compression-

Compression 2—.0075 =.99 (-1%) 13% 12%

The difference between BG2 and BGl veneer in fatigue has not been
specifically established via test. The best which can be done at this time
is to assume that the difference in fatigue would be the same as the
difference in the associated static properties.

From the MOD-5A materials testing we find (adjusted to 127 wmc):

Maximum Tensile Maximum Compressive
Strength (psi) Strength (psi)
) 3 [ —
BG1 BG2 BG1 BG2
No joints 9706*% 10016 7345 7149
Butt joints 10183 8534 6968 6452

¥This value appears to be anomalously low - see later discussion
in this section.

Combining both the no joint and butt joint samples into an overall

comparison of BGl vs. BG2 to reduce the effect of possible data anomalies,
we find:

9706 + 10183
Tension: = 1.072, +7%
10016 + 8534

7345 + 6968
Compression: —————————— = 1.052, +5%
7149 + 6452

95



In order to arrive at an overall improvement for going from BG2Z to BGl and
also eliminating butt joints, we proceed as follows:

Tension-Tension - Since the butt joint test population was a BGZ and
BGl mix, presumably about half of the BGl vs. BG2 correction is
already present in the butt vs. scarf fatigue comparison, so add 1/2

of the BG2 to BGl tension improvement (7%/2 = 3.5%). Use 3 percent
conservatively.

Fully Reversed - Apply the compressive correction as is done for
moisture.

Compression-Compression - Apply the compression correction.

Propert Overall Improvement
perty

Tension-Tension (R=0.1) 177 (147 + 37%)
Fully Reversed Fatigue (R=0.1) 15% (107 + 5%)

Compression-Compression (R=0.1) 17% (12% + 5%)

Design Driver Tension-Tension (R=0.1) Improvement = 177

ad justed from BG2 to BGl veneer
and adjusted from butt joints to unjointed laminate

The BG2 vs. BGl allowables upgrade for both tension and compression is
already given on this page. The static butt jointed vs. unjointed upgrade is

also required to determine the overall hub static upgrade for the R = +l
allowable.

Some care must be exerted in determining the butt jointed vs. unjointed
tension upgrade because there is evidence to suggest that the unjointed BG1
results were artificially low and with high scatter, probably due at least
in part to the effect of rough surfaced veneer. (An unusually high
coefficient of variation for this data supports that hypothesis. The same is
true for the anomalous compression results cited in the following discussion
of the compression upgrade.) Perhaps the best that can be done is to average
together the results for BGl, BG2, and C veneer grades in order to minimize
the anomalous BGl results, since additional testing was not conducted to
resolve the initial anomaly. (An ultrasonically screened, C-grade veneer had
been evaluated in the MOD-5A materials test program in 1981.) The MOD-5A

tension results for the three veneer grades are shown in the following
table.
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Tensile Strength for Veneer Grades
at 12% wmc, psi

f B
BG1 BG2 C

Unjointed 9706 10016 8972

Butt-jointed 10183 8534 7392

9706 + 10016 + 8972
Average Upgrade: = 1.10, +10%
10183 + 8534 + 7392

With a BG2 to BGl tension upgrade of 7 percent, the combined upgrade for the
unjointed BGl hub material is 17 percent (10% from jointed to unjointed + 7%
from BG2 to BGl).

Tension Upgrade for Unjointed BGl Hub Material

R = +1, Tension = +17%

An anomalous condition of a lesser degree also appears to exist in the
MOD-5A compression data in that the results for BG2 butted material are
inexplicably lower than those for butted C grade material. A similar
averaging procedure is again called into use to reduce the effect of this
anomalous result.

Compressive Strength for Veneer Grades
at 127 wmc, psi

r ]
BG1 BG2 C

Unjointed 7345 7149 6912

Butt-jointed 6968 6452 6674

7345 + 7149 + 6912
Average Upgrade: = 1.065, +7%
6968 + 6452 + 6674

With a BG2 to BGl compression upgrade of 5 percent, the combined upgrade for
the unjointed BGl hub material is 12 percent.
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Compression Upgrade for Unjointed BGl Hub Material

R = +1, Compression = +127%

The R = +1 tension upgrade of 17 percent is the same as the R = 0.1
tension-tension upgrade of 17 percent, and is nearly the same as the R = -1
(fully reversed) upgrade of 15 percent. Since it is the tension side of the
Goodman diagram which drives the design, that alone is sufficient
justification to choose a 17% hub allowables upgrade. In addition, note that
the compression-compression upgrade of 177 is slightly higher than is
likely, and this is probably due to a statistical variability associated
with having only seven scarf fatigue data points. The 12 percent, R = +1

compression upgrade is more believable, but the issue is academic since
neither drive the design.

Overall Upgrade for BGl Hub Material

Goodman Diagram Upgrade = 17%

Static Tension Allowable

Analysis

The basis for the static tension allowable is the curve fit to the static
tension size effect data from the MOD-5A materials test data. With a
characteristic volume of 6250 cu.in. for this 90 foot diameter rotor, the
mean tensile strength allowable is 8121 psi for butt-jointed BGl material. A
20 ad justment factor of .84 is used as was done for MOD-5A. The BGl to BG2
adjustment of .838 is again used, as was done in the derivation of the R =
+1 tension fatigue allowable. The MOD-5A extreme temperature adjustment
factor of .95 is replaced by an extreme temperature adjustment factor of .93
to reflect the fact that this rotor is being designed to an upper
temperature extreme of 120 degrees Fahrenheit (F), rather than the MOD-5A

value of 104 degrees F (against assumed average test temperature in both
cases of 68 degrees F).

Calculation of extreme temperature adjustment factor:

100%-[5% x (120-68)/(104-68)] = 93%
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Calculation

Mean tensile strength =8121 psi
(12% wmc, butt-jointed, BGl, 6250 cu. in.)

20 ad justment .84

BGl to BGZ adjustment .838

Extreme temperature adjustment factor .93

Outer Rotor Static Tension Allowable =5316 psi

Butt-jointed BG2 to Unjointed BGl upgrade
(Same as calculated for R = +1 tension) 1.17

Inner Rotor (Hub) Static Tension Allowable =6220 psi

Summary

Static Tension Allowable
Outer Rotor = 5316 psi (butt-jointed BG2)
Inner Rotor (Hub) = 6220 psi (unjointed BGl)

mean - 20, 5 minute load duration, 120 degrees F, 6250 cu.in.

Static Compression Allowable

Analysis

The Coefficient of Variation (COV = standard deviation/mean strength) of the
MOD-5A BG2, butt-jointed compressive test data is suspiciously high, and the
mean compressive strength of 6452 psi is lower than the mean of 6674 psi for
the C grade butt-jointed material. This lends a conservative factor to the
following calculation. The extreme temperature factor of .70 for 120 degrees
F is the same as was used in the MOD-0A wood/epoxy blade design. The 24
correction of .84 and the proportional limit factor of .85 are the same as
were used in the MOD-5A allowables derivation. The butted BG2Z to unjointed
BGl upgrade is the 12% factor as calculated for R = +1 compression.
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Calculation

Mean Compressive Strength

(12% wmc, butt jointed BG2) =6452 psi
20 ad justment .84
Extreme temperature adjustment .70
Proportional limit adjustment .85

Outer Rotor Static Compression Allowable =3225 psi
Butt-jointed BG2 to unjointed BGl upgrade 1.12

Inner Rotor (Hub) Static Compression Allowable =3612 psi

Summary

Static Compression Allowable
Outer Rotor = 3225 psi (butt-jointed/BG2)
Inner Rotor (Hub) = 3612 psi (unjointed BGl)

mean - 20, 5 minute load duration, 120 deg.F, proportional limit

Finger Joint Allowables

Overview

It has been generally accepted that the presence of finger joints would
cause the greatest loss of performance in tension-tension fatigue, and
therefore a series of finger joint fatigue tests have been performed at R =
0.1 tension fatigue. Samples like those used to test butt-jointed and
scarf-jointed laminates were used, so direct comparisons can be made. From
the MOD-5A test data, the mean peak tensile stress for a BG2/BGl mix of
butt-jointed samples at 106 cycles was 6369 psi at 10% wmc. This value is
corrected downward by 3 percent to go from the mix to pure BG2 veneer, and
by an additional 3.2 percent to go from 10% wmc to 127 wmc.
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Peak tensile stress at 106 cycles
(butt-jointed) =6369 psi

BG2/BGl mix to BG2 adjustment (1/1.03) .971
10% wmc to 127 wmc adjustment (1/1.032) .969

Peak tensile stress at 106 cycles
(butt-jointed, BG2, 12Z wmc) =5992 psi

Peak finger joint stress at 106 cycles
(BG2, 12% wmc) =4550 psi

The peak finger joint stress comes from the current plot of the finger joint
test results corrected to 127 wmc. The value of 4550 psi is 76 percent of
the comparable 5992 psi value for butt-jointed BG2 veneer at 127 wmc. At
first look this would appear to imply a need to substantially thicken the
joint region to compensate the lowered allowable, and this could be so, but
the rotor has a much larger volume of laminate than do the finger joints,

and thus a separate size correction must be made in order to properly
determine the finger joint allowable.

Analysis

The volume of the test region of the finger joint samples is the standard 32
cu.in. test volume. The configuration tested was a 6 inch long finger with
an additional inch of cylinder beyond each finger tip. The characteristic
volume can be taken to be the 4 square inch (sq.in.) circular cross-section

times the 6 inch finger length equals 24 cu.in., directly within the joint
region.

The rotor cross-sectional area at the finger joints is:
[21.8 x 34.2 +7(10.9) ] = 1119 sq.in.

There are two finger joint regions, each 11.5 inches long, so the overall
finger joint spanwise length is a total of 23 inches. Multiplying the above
two numbers gives the total finger joint region total enclosed volume of
25,737 cu.in. Because the stress is not uniform across the rotor volume, a
form factor should be applied to calculate an equivalent (uniformly
stressed) volume. The 1 percent form factor used in calculating the rotor
allowables for the MOD-5A and elsewhere on this rotor will again be used
here.

101



Calculation

Finger joint test sample
characteristic volume: 24 cu.in.

Rotor finger joint characteristic
volume (25,737 x 0.01): 257 cu.in.

Size adjustment (257/24) -09853 s 792

Peak finger joint stress, corrected for volume

(BG2, 12% wmc, 1086 cycles) =3604 psi

206 ad justment .84

106 to 4 x 108 adjustment [400 —-0897] .584

Temperature spectrum adjustment .975

Peak finger joint tensile stress =1724 psi
Summary

Finger Joint Allowable
R = 0.1, Tension Fatigue
1724 psi
mean - 20, 257 cu.in. volume, 127 wmc
BG2, temperature spectrum, 4 x 108 cycles

Discussion

The R = 0.1 tension finger joint allowable of 1724 psi calculated above is
within 2 percent of the allowable of 1757 psi for the butt-jointed BG2
veneer which makes up the bulk of the outer rotor. In effect, the size
effect correction has compensated the loss of strength associated with the
finger joints. The butt jointed material is already suffering a strength
knockdown due to the detrimental effect of the butt joints, and one should
note that butt joints are eliminated from the finger joint region so that it
is beginning with an elevated basic strength. In addition, the finger joint
region is only a small fraction of the overall rotor volume, so it does not
experience as large a reduction due to scale effect. The perhaps surprising
result is that very little reduction in the allowable is required in the
finger joint region. Since a data base of finger joint fatigue data exists
only for R = 0.1 tension, it is not possible at this time to directly
calculate finger joint allowables at other stress ratios. However, the
detrimental effect of defects appears to be greatest for tension-tension
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fatigue, and evidence to support this exists in that the fatigue curve slope
for butt-jointed material is much larger in tension-tension fatigue than it
is in fully reversed or compression fatigue. So we should already be seeing
the worst effect of the finger joint induced stress raisers (defects) in the
existing tension-tension fatigue results. It would thus appear to be a
conservative position to take 987 of the outer blade Goodman diagram as a
characterization of the finger joint fatigue performance, provided that the
11.5 inch fingers have proportions geometrically similar to those used in
the MOD-5A materials test program.

Finger Joint Fatigue Performance Assumed
To Be 98 Percent of Outer Rotor Goodman Diagram

Low Speed Shaft Hole - Tension Side

The shape finally chosen for the tension side low speed shaft hole was a
football shaped hole formed with 21 inch radius circular arcs, as
illustrated in Figure 67.

2-L=\8

SPANWISE.
—— i

Figure 67. - Tension Side Low-Speed Shaft Hole Geometry

The primary motivation for this choice was the desire to obtain a lower
value of stress concentration along the edge of the hole than would exist
for a circular hole. The classical result for the stress concentration at
the tip of an elliptical hole in a homogeneous isotropic material is:

S=2S0x [1+2x (L/R)5]

where So is the average stress away from the hole, L is 1/2 of the
hole width, and R is the radius of curvature
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For the football shape chosen:
S/So = [1 + 2 x (9/21)5] = 2.31

By comparison, a circular hole has a stress concentration factor (S/So) of
3.0, so a circular hole would exhibit a peak stress 30 percent higher than
does the selected football shaped hole. This is a useful and easily obtained
reduction of peak stress.

Neither wood nor laminated wood/epoxy composite is a homogeneous isotropic
material. The lamination process does improve overall homogeneity
significantly, but the highly anisotropic nature of the underlying wood is
still very evident. This is where +/- 45 degree fiberglass augmentation
plies become useful. The purpose of this augmentation is to increase the
shear stiffness of the augmented laminate to a level where the ratio of
longitudinal stiffness along the major stress direction to shear stiffness
is about the same as the 2.66 ratio which exists for classical homogeneous
isotropic materials such as metals.

E/G=2x (1 +v)

where E is the Modulus of Elasticity, G is the Shear Modulus, and V
is Poisson's ratio

Note that if the shear stiffness could be raised to arbitrarily high levels
without changing the longitudinal stiffness, this would mean that the shear
lag would approach zero and only a vanishingly small stress concentration
would exist along the side of the hole.

The football shaped tension side hole is to be provided with a 0.5 inch
thick hole liner. Ignoring for the moment that this hole liner is of
relatively high modulus unidirectional carbon fiber/epoxy laminate and will
therefore accept higher loading than the fiberglass augmented wood/epoxy
laminate, the purely geometric effect the change in hole dimensions has upon
the idealized stress concentration factor can be calculated:

S/So = [1 + 2 x (8.5/20.5)-5] = 2.29

This calculation makes it clear that the stress concentration factor is not
sensitive to small changes in hole dimensions, and one can use a 2.3 to 1
stress concentration factor for the tension side low speed shaft hole
without worry that small manufacturing variations could upset the
calculations.

The 2.3 to 1 stress concentration factor is applied directly to the edge of
the hole at rotor spanwise centerline (the widest part of the hole). In
order to estimate the hole edge stress at other locations along the rotor
spanwise centerline, it was assumed that the chordwise stress distribution
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could be approximately modeled by a triangular distribution of excess stress
superimposed on a rectangular base of normalized stress, as shown in Figure

.

2.3

)
Figure 68. - Geometry of Stress Redistribution Due to Cutout

We require that the triangular distribution of excess stress produce a
stress concentration of 2.3 at the hole edge when h = 9 at rotor centerline.
We also require that the excess stress vanish beyond the hole, so that a
normalized stress equals 1 when h = 0. A final constraint is that the total
area under the stress curve must remain constant everywhere along the hole,
so that overall stress is not being created or destroyed, but is simply
being moved from the cutout into the remaining nearby material. These
conditions taken together dictate a characteristic chordal width dimension
for the assumed stress field, which can be shown to be 22.85 inches for S =
2.3 and h = 9. We can then write:

h +c = 22.85
and
k=14+2(h/c)

where 22.85 is the characteristic chordwise dimension and k is the

hole edge stress concentration factor, S/So for other values of hole
half width h.

If one attributes to the carbon fiber liner the properties of the augmented
fir laminate, the equations become:
h +c=21,58

and again,

k=1+2(h/c)
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Assuming that the flatwise stress distribution extends about 22 inches
either side of hole centerline is seen to be quite consistent with the rotor
hub shape and 57.5 inch chordal dimension.

Tension Hole Allowable Perspective

As will be seen in the discussion of the compression side hole at the end of
the section, a wood or wood composite test sample with a hole in it may
perform in a way which seems to largely ignore the classical effects of
- stress concentration. A perfect example of this is the effect of butt joints
upon laminate performance. Butt joints are certainly holes in the spanwise
fiber composing the laminate, and their corner radii are worse (smaller)
than those for a perfectly circular hole. So we might expect the presence of
butt joints to degrade laminate performance by a factor of three or even
more, since three is the stress concentration factor for a circular hole.
This does not occur. The worst effects are seen in fatigue, and even there

the percentage reductions due to butt joints are rather modest, as shown
below.

Scarf Joint Improvement on 106 Cycle Butt Joint Performance

Tension-Tension +147
Fully Reversed +107%
Compression-Compression +127%

Note: See upgrade analysis for BGl unjointed hub material

These facts argue that using classical stress concentration factors for

holes in wood composite structures is a very conservative procedure in at
least some known cases.

The explanation for this behavior seems to lie at least in part in the realm
of scale effect i.e. the allowable for the very small high stress volume
near the butt can be taken to be much higher than for the majority of the
wood away from the butt. There is still a difficulty in that we consider
that there is little or no scale effect in compression, and yet the hole
toleration effect is still strong in compression. One can take recourse to
the argument that failed fiber must still carry considerable load in
compression (unlike tension) and this is surely so. Nonetheless, the matter
of wood laminate's ability to tolerate holes must be regarded as rather
remarkable when considered from the viewpoint of classical stress
concentration factors.

As an illustrative example we can calculate the strength of the tension side

hole by imagining it as a very large butt joint and using scale effect to
relate its performance to the measured performance of butt jointed laminate.
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Test sample butt joint volume

(0.1 x 0.1 x 6.75): 0.0675 cu.in.
Circular rotor hole volume

(12 x 18 x 22): 7128 cu.in.
Form factor (account for non-uniform

stress with depth): 0.01
Effective rotor hole volume

(7128 x 0.01): 71.3 cu.in.
Volume ratio (71.3/0.0675): 1056

Tensile fatigue scale factor

1056 —~09853 : 0.504

Peak Tension-Tension stress
(butt-jointed laminate, 4 x 108 cycles) =3721 psi

20 ad justment .84
10Z wmc to 12Z wmc adjustment .969
Temperature spectrum adjustment .975
Size effect adjustment .504

Tension Hole Fatigue Allowable =1488 psi

The basic R = 0.1 tension fatigue allowable derived for the BGl hub material
is:

1757 x 1,17 = 2056 psi

.where 1757 is the allowable (in psi) for butt jointed BG2 veneer

laminate and 1.17 is the upgrade factor for un jointed BGl veneer
laminate

If scaling a butt joint to 18 inch size were a valid procedure, an allowable
of 1488 psi could be used against net cross-section with stress
concentration effect already accounted for (since stress concentration near
butt joints was present during the tests). In our analysis, we have
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explicitly accounted for a stress concentration of 2.3 to 1, with an
allowable of 2056 psi:

2056/2.3 = 894 psi (So in Figure 68)
therefore,
894 x 1,65 = 1475 psi
where 1.65 is the average stress where a triangular distribution of

concentrated stress (2.3 times the normal stress) is superimposed
over the normal stress as is shown in Figure 69.

2.3
(=)

Ko

Figure 69. - Geometric Determination of Average Stress

That the 1475 psi (against net cross-section) allowable actually used in the
design is so close to the 1488 psi (also against net cross-section)
calculated above must be regarded as largely fortuitous since the
calculations involve many approximations and simplifications. Nonetheless,
it is interesting that scale effect does seem to provide some unification
between two very different hole sizes, and there is some added confidence in
seeing two very different methods produce similar allowable values.

Low Speed Shaft Hole — Compression Side

The rotor compression side hole has been given relatively less attention
than the tension side hole for four basic reasons:

1. Compression side material in this hub operates at lower strain

because the neutral axis is shifted toward the hub compression side
by the thick interior buildup.

2. The compression side hole receives considerable help from the

steel hole liner/teeter stop weldment which carries load accross the
hole.
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3. Compression side failure would be gradual if it did occur.

4, Some fatigue data exists (from MOD-5A testing) which indicates
that a rather modest knockdown is sufficient to account for a hole
in compression.

A brief summary of the existing data on holes in compression will be given
here. The work referred to was performed in support of the MOD-5A materials
test program at a time when it appeared that aan internal teeter with a hole
through the compression side might be used. Rectangular samples 12 inches
long, 6 inches wide, and 15 laminations thick ( 0.1 inch thick veneer) with
a 2 inch diameter hole in the center were tested both statically and in
fatigue. Samples were both normal fir laminate and fir laminate augmented
with +/- 45 degrees fiberglass. Both unreinforced holes, and holes with a
1/8 inch fiberglass reinforcing ring were tested.

After adjustment to 127 wmc, the compressive fatigue results (R = 0.1) taken
at 106 cycles were approximately as follows:

Unaugmented Laminate, Unreinforced Hole
Augmented Laminate, Unreinforced Hole 4000 psi at 106 cycles
Unaugmented Laminate, Reinforced Hole

Augmented Laminate, Reinforced Hole: 5000 psi at 106 cycles
Note: stress computed against net cross-section at 127 wmc

The 5000 psi result at 106 cycles is virtually the same performance level as
was obtained for butt jointed laminate at 106 cycles during the MOD-5A test
program (5011 psi at 106 cycles and 127 wmc). The conclusion is that the
comppression side hole does not show much stress concentration knockdown,
particularly when augmented and in the presence of a hole liner, as this hub
will be. The design margin is consequently large.
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16.0 APPENDIX D - Exploratory Testing of a
Wood/Epoxy/Graphite Composite Concept

Summary

In support of improving load take-off stud performance, relative to
wood/epoxy composite wind turbine blade applications, a concept was proposed
for increasing the elastic modulus of the laminate, by fifty percent, in the
region of the studs. The proposed scheme for achieving the stiffness
increase was to alternate plies of unidirectional graphite fabric with the
standard plies of 0.1 inch thick Douglas fir veneer. A minimum scope test
program was designed and implemented to explore the concept.

Results of testing the graphite augmented wood/epoxy laminate in compression
ramp-to-failure and compression fatigue over a range of temperatures
indicate that the concept is appropriate for stud applications with the only
indicated limitation being at elevated temperatures. In tension stud
ramp~to-failure and fatigue tests, the augmented laminate was examined
relative to its interaction with a bonded stud. The results, although
clouded by steel fatigue, were also encouraging. Finally, several
ramp-to-failure and fatigue tests were conducted on compression samples
simulating the region where the basic wood/epoxy laminate would transition
(or merge) into the graphite augmented laminate. The results of these tests
provide additional confidence for applications of the concept.

Background

Currently, bonded load take-off studs are utilized for the transfer of all
loads from wood/epoxy composite wind turbine blades to a mating metal hub. A
series of five stud designs were recommended by GBI for testing because they
isolate principal variables capable of extending performance of load

take-off studs while maintaining reasonable materials and manufacturing
costs.

In this group of proposed stud designs, one of the designs (Design 5)
assumes the use of augmented laminate, in the region of the tapered stud.
The augmented laminate would have nearly a fifty percent higher elastic
modulus over the baseline wood/epoxy laminate. Such a scheme would serve to
reduce the elastic modulus difference between the steel studs (E=3.0 million
psi) and the wood/epoxy laminate (E=2.0 to 2.2 million psi) into which the
studs are bonded. Reducing this difference in modulus should serve to reduce
peak shear stress levels in the epoxy. Epoxy shear failure has been the
prevailing fatigue failure mechanism in all stud testing programs to date.

It is also anticipated that the one-time load carrying capability of
bonded-in-studs would be enhanced because this failure mode is typically
linked to the bulk laminate shear strength. The bulk laminate shear strength
is also expected to improve along with the increase in bulk laminate elastic
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modulus due to the introduction of parallel fibers which are higher ‘in
stiffness and strength than the wood fibers.

The use of unidirectional graphite, placed between each veneer ply and
oriented parallel to the wood fiber in the laminate, was proposed by GBI for
achieving the desired modulus enhancement. Because a preliminary
investigation indicated that unidirectional fabric thicknesses of more than
0.015 inches (dry), when alternated between plies of Douglas Fir veneer,
result in no further increase (and in some cases a decrease) in compressive
strength, a fabric of nominally 0.010 inches thick was selected as the
principal augmenting candidate. This determination of an optimum fabric
thickness may be attributed to the compressive dependence of the thin layers
of carbon fiber on the thicker wood layers for column stability. These wood
layers, of a relatively constant thickness, may be limited in their ability
to support slightly thicker layers of carbon fiber. To further explore this
issue, very limited evaluation of a unidirectional fabric with dry thickness
of 0.015 inches was conducted in this test program.

GBI was tasked with developing and executing a minimal scope test program to
ensure that this graphite augmentation concept was sound.

Test Program Design

The test program matrix is shown in Table XX (Note that Tables and Figures
for this appendix are included within this section). Number of samples are
indicated for each defined sample configuration and test type. Control
samples (containing no graphite augmentation) were also taken from cach
laminate billet to both characterize the laminate and to allow relative

performance comparisons between graphite augmented and unaugmented laminate
to be made.

Most tests were to be conducted at room temperatures (65 to 75 degrees
Fahrenheit). Some ramp-to-failure and very low cycle fatigue tests were to
be conducted at temperature extremes of approximately -40 and 120 degrees
Fahrenheit. Tests included compression ramp-to-failure, compression fatigue,
tension stud ramp~to-failure, and tension stud fatigue. All fatigue tests
were to be conducted at a constant stress ratio (R) of 0.1 (R = minimum
magnitude stress/maximum magnitude stress). Fatigue tests were to be
targeted to 10,000, 100,000 and 1,000,000 cycles.

The basic compression sample design was a 2 inch thick by 2 inch wide by 8
inch high laminate block. All fiber was aligned parallel to the major
dimension. The blocks would be composed of approximately 19 Douglas fir
veneer plies (and 18 unidirectional graphite fiber plies if fully
augmented). If augmented, the two materials would be alternated and bonded
with WEST SYSTEM (R) Epoxy. Some specimens were also specified as 'augmented
transition' samples and were to be only partially augmented to simulate the
Structural region where graphite fiber is introduced into the laminate.
Details are illustrated in Figure 70 which also describes the tension stud
sample and the general compression sample.
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Strain measurements would be taken, on a limited basis, during compression
ramp tests. The strain values would be used to confirm the elastic modulus
of fully augmented and unaugmented samples. Modulus values of 2 million psi

and 3 million psi were expected for the unaugmented and fully augmented
laminates respectively.

Tension stud samples were designed with 48 inch laminate block lengths and
with a 0.75 inch diameter, high strength steel rod, with rolled threads,
bonded into each end of the block as illustrated in Figure 70. The threaded
steel rod studs would serve to introduce the load to the laminate block.
This would simulate the interaction between the laminate and more
sophisticated load take-off stud designs (such as Design 5). To match the
unaugmented and augmented laminate stiffnesses surrounding the threaded rod,
different width and thickness dimensions were specified for the unaugmented
(control) and the augmented laminate tension samples. These dimensions were
to be 2.40 by 2.40, and 2.13 by 2.13 inches respectively.

Sample Fabrication

A total of five laminate billets (designated 1 through 5), of different
dimensions were fabricated from GBI specified Blade Grade 2 (BG2), 0.1 inch
thick, rotary peeled Douglas fir veneers. BG2 is the second highest
structural classification for ultrasonically screened veneer used by GBI in
wind turbine blade construction. Earlier tests had shown the BG2/Graphite
fiber combination yielded the elastic modulus desired, namely 3 to 3.2
million psi. The principal unidirectional graphite fabric used was ORCOWEB
Graphite (4.75 oz./sq. yd. and 0.010 inches dry thickness) for the
augmentation in billets 1, 2, 4, and 5 which are detailed in Figure 71. Also
used, but for fewer samples was FIBERITE Style W-1705 (5.86 oz./sq. yd. and
0.015 inches dry thickness) for the augmentation in billet 3 which is also
detailed in Figure 71. Earlier tests had suggested that the FIBERITE Style
W-1705 may have degraded fatigue performance, perhaps due to abrasion from
the fiberglass fill yarns which are used to hold the fabric together. The
ORCOWEB fabric has a less 'compromising' construction with no interweaving
of fill fiber. The two fabrics are illustrated in Figures 72 and 73. The
adhesive used in all samples was WEST SYSTEM (R) 105 Epoxy Resin and 206
Hardener. Billets were laminated under 20 to 24 inches Hg of vacuum.

Veneers for each billet were conditioned to average wood moisture contents

of 5 to 8 percent. The veneers were taken at random from available BG2
inventory.

To minimize variation among test sample groups, each laminate billet was
designed so that a large dispersion of variable groups would be fabricated
from the same material. Furthermore, veneers were split lengthwise from
billets 1, 2, and 3. One part of the split veneer was utilized for the
augmented portion of the billet while the remainder went into the
unaugmented portion of the billet. Again, this was done to minimize the
influence of wood fiber variation. This scheme is illustrated in Figure 71.

112




Testing Methods

Tests were conducted both at GBI's Materials Test Laboratory and at the
University of Dayton's Structural Test Laboratory (under GBI Purchase Order
No. 11674). At GBI's facility, an MTS (model 810.14-2) two column, 110,000
pound load capacity, servo-hydraulic, closed loop test system was utilized
to perform all tests. At the University of Dayton, a similar MTS system (STL
Machine No. 2), with 50,000 pound rated load cell and hydraulic actuator,
was utilized to perform all tests. Calibration of both system's electronics
for accuracy of load, stroke, and strain measurements was conducted within 6
months of all tests. Typical setups are shown in Figures 74 and 75.

Five minute ramp-to-failure tests were conducted per ASTM Standard D198. The
selected ramps were 8000 pounds per minute for unaugmented compression
samples, 12,000 pounds per minute for augmented compression samples, 6000
pounds per minute for unaugmented tension stud samples, and 8000 pounds per
minute for augmented tension stud samples. Tests were conducted at room
temperatures ranging from 65 to 75 degrees Fahrenheit. A uniform failure
criteria of 0.2 inch actuator deflection (from start of ramp) was
established for compression tests while a similar criteria of 0.5 inches was
applied to tension stud tests.

A knife edge extensometer was used over a typical gage length of 2.0 inches,
on randomly selected compression samples, for measurement of strain. A total
of 13 augmented and 9 unaugmented samples were evaluated for strain.

All fatigue tests were conducted at a constant stress ratio of 0.1. An 8 Hz
sinusoidal load was typically applied to compression fatigue samples, while
tension stud fatigue samples were typically subjected to a 4 Hz sinusoidal
load. All fatigue tests were conducted under closed-loop load control.
Progressive damage could, in most cases, be monitored via measurement of
peak-to-peak actuator movement as a constant peak-to-peak load was applied
to the sample. This feature was useful in monitoring failure trends and
aided in identifying runout tests (tests which were excessively
outperforming a failure prediction) which eventually required termination.
Failure criteria identical to those for ramp-to-failure tests were used for
fatigue samples, All fatigue tests were conducted at room temperatures
ranging from 65 to 75 degrees Fahrenheit.

To minimize the cyclic fatigue stress imposed on the threaded rod used in

tension stud tests, nuts were used to lightly pretension the rod against the
test grips.

High and low temperature compression tests were carried out by allowing the
samples to stabilize in controlled temperature environments. The samples
would then be individually removed from the conditioning environment and
placed in an insulating jacket before being put between the test platens.
When possible, post failure temperature measurements were taken. Although
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this procedure did not precisely maintain constant specimen temperature, the
results still reveal the general performance trends at temperature extremes.

Test Results and Conclusions

Augmented and unaugmented samples were manufactured from the same veneers,
therefore relative comparisons of results, without normalizing wood moisture
content (WMC) to a standard level, are valid. For a limited number of failed
ramp-to-failure compression samples, laminate moisture content (IMC) was
determined. This was accomplished using the oven drying method (ASTM Method

D143, Sections 124 and 125) which involves principally, the following
calculation:

100 x (Post Test Weight — Oven Dry Weight)
IMC (%) =

Oven Dry Weight

Test results for ramp-to-failure compression tests are given in Table XXT.
Test results for compression fatigue tests are presented in Table XXII and
are plotted in Maximum Stress versus Total Cycle (S-N) format in Figure 76.
Test results for compression samples, evaluated for elastic modulus only,

are given in Table XXIIa. These results are summarized and discussed later
in this section.

Test results for tension stud ramp-to-failure tests are given in Table
XXIII. Test results for tension stud fatigue tests are tabulated in Table
XXIV and are plotted in S-N format in Figure 77. These results are
summarized and discussed later in this section.

Test results for extreme temperature compression results are included in
Tables XXJ and XXII. Temperature extreme fatigue results are plotted in S-N

format in Figure 78. These results are summarized and discussed later in
this section.

The average control laminate elastic modulus value was 2.2 million psi for
billet 1 samples and 2.0 million psi for billet 2 samples. For laminate
augmented with ORCOWEB Graphite, the average elastic modulus was 3.0 million
psi for billet 1 samples and 2.6 million psi for billet 2 samples. For

laminate augmented with FIBERITE Style W-1705 Graphite, the average elastic
modulus was 3.1 million psi.

Ramp-to-failure compression results are summarized in Table XXV. The control
material for billets 1, 2, and 3 performed similarly. This allowed direct
comparisons to be made between the ORCOWEB Graphite (contained in billets 1
and 2) and the FIBERITE Style W-1705 (contained in billet 3). Control
samples from billets 4 and 5, which were partially augmented to simulate
augmented transition material, performed respectively 5 percent below and 11
percent above billet 1, 2, and 3 values.
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Compressive ramp-to-failure results are characterized by relatively low
scatter. Highest coefficients of variation (COV) were seen in the mixed

billet 1 and 2 results. Four trends can be summarized from the results of
these tests.

1. ORCOWEB Graphite augmentation provides a 38 percent static
performance enhancement at room temperature, while the FIBERITE
W-1705 augmentation (although based on far fewer samples) showed a
58 percent performance gain.

2. At reduced temperatures (approx. -40 deg. F), the static
performance of control material was enhanced by 26 percent while the
graphite augmented material static performance increased by an
average of 24 percent. Reference 8 predicts a nominal 31 percent

improvement in performance when going from 68 degrees to -40 degrees
(Fahrenheit).

3. At elevated temperatures (approx. 120 deg. F), the performance of
control material was degraded by 13 percent while the graphite
augmented material performance dropped by an average of 22 percent.
Reference 8 predicts a nominal 13 percent drop in performance when
going from 68 degrees to 120 degrees Fahrenheit. The large
performance drop for the augmented material may point to the
dependence of the graphite on the wood fiber for column support.,

4, The ramp-to-failure tests conducted on partially augmented
samples from billet 4 performed slightly better (27) than the
control material from the same billet. Sample populations in this
comparison were small, nevertheless the results indicate that the
augmentation transition scheme generates no adverse stress
concentrating effects for static type loads.

The compression fatigue summary (Table XXVI), suggests some significant
trends. Comparing linear regression values from the developed S-N curves at
10,000 and 1,000,000 cycles shows that augmented transition malerial
experienced an average 4 percent drop in fatigue performance from that of
control laminate. This was likely due to the stress concentrating effects of
terminated fibers of relatively high elastic modulus within the laminate. On
the other hand, the fully augmented material performed an average of 44
percent above the control laminate in fatigue. It is also worth noting that
the FIBERITE W-1705 augmented laminate typically performed near the upper
end of the scatter band, dispelling much of the concern that interwoven,
transverse glass fiber may contribute to an accelerated degradation of the
carbon fiber. However, the observed increase in performance was not in
proportion to the increase in graphite material, again indicating that a
limit, in the ability of the wood laminate to support the increased graphite
content, may be coming into play.

Comparisons of high and low temperature low-cycle compressive fatigue tests

do show that, at reduced temperatures (approx. -40 deg. F), both unaugmented
and augmented samples performed approximately 24 to 27 percent above the
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room temperature trend line. At elevated temperatures (approx. 120 degrees

Fahrenheit) the augmented material seemed to take a proportionately greater -
performance loss (approx. 22 percent) over the loss of unaugmented material

(approx. 12 percent) when comparing results with room temperature trend

lines. Although the test technique was unrefined, and samples were observed

to be as much as 20 degrees off of their extreme temperature by the end of

test, these results compare closely to the ramp-to-failure extreme

temperature results.

The partially augmented (transition) sample fatigue tests yielded results
which were initially a cause for concern. After manufacturing a second
billet (billet 5) of partially augmented material, it was evident that the
relatively poor results of the billet 4 test samples was due more to weaker
wood fiber than any other factor. This is evident from the compression
ramp-to-failure results of billet 4 and 5 control samples. Linear regression
fatigue data trends for the partially augmented samples show that from
10,000 to 1,000,000 cycles, partially augmented laminate performed on
average at 967 of the control laminate level. Therefore, it can be concluded
that the stress concentrating effect of the terminated graphite fibers is
very small in this configuration in fatigue.

Tension stud ramp-to-failure results are summarized in Table XXVII. The
control samples showed the performance level of billet 2 samples to be lower
by 14 percent relative to billet 1 samples and billet 3 samples to be lower
than billet 1 samples by 9 percent. This performance level gap was slightly
reduced between billet 1 and billet 2 samples (from 14 to 10 percent)
following the introduction of ORCOWEB graphite as augmentation fiber into
each sample group. The performance level gap between billet 1 and billet 3
samples was essentially eliminated following the introduction of FIBERITE
W-1705 graphite as augmentation fiber into billet 3. If the observed
reduction of variability is a consistent trend for augmented material, that

would be a significant additional advantage in the use of augmented material
in stress critical stud applications.

The tension stud fatigue summary, as shown in Table XXVI, was somewhat
obscured by fatigue problems with the high strength steel studs. It can be
seen that failures were steel dominated between 100,000 and 1,000,000 cycles
which resulted in the convergence of augmented and unaugmented data.
Nevertheless, the performance benefits for studs bonded into augmented
laminate are clearly shown at lower cycles. Based on the linear regression
curves of the augmented and unaugmented data sets, from 10,000 to 1,000,000
cycles, studs bonded into augmented laminate perform at an average load 10
percent higher than studs bonded into unaugmented laminate. On a basis of
stress level, this performance gain is increased to 39 percent due to the
smaller cross section of the augmented tension samples.

Upon completion of this concept qualification test program, it was

recommended to NASA that the benefits of graphite augmenting of wood/epoxy

laminate were substantial. Therefore, the advanced load take-off stud design i
based on such augmented laminate could be tested with confidence that the

laminate performance and stud interfacing behavior were sound.

116




TABLE XX. - GRAPHITE AUGMENTED WOOD/EPOXY LAMINATE TEST MATRIX

(Number of Samples)

SAMPLE CONFIGURATION (Reference Figure 70)

Test
Type

Control
(No Augmentation)

Transition Laminate*
(Partially Augmented)

Fully Augmented
Laminate*

Compression
Ramp-to-Failure
At Room Temperature

Compression
- Ramp-to-Failure
at —-40°F

Compression
Ramp-to—Failure
At 120°F

Compression Fatigue
Target 104 Cycles
At Room Temperature

Compression Fatigue
Target 104 Cycles
At -40°F

Compression Fatigue
Target 104 Cycles
At 120°F

Compression Fatigue
Target 105 Cycles
At Room Temperature

Compression Fatigue
Target 106 Cycles
At Room Temperature

17

11

12(2) **

3(1) **

2(1)%**

4 (1) %

*Unless otherwise noted, augmenting fabric is ORCOWEB Graphite
**Value in brackets is the number of samples using Fiberite W-1705 Graphite
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TABLE XX. (continued) - GRAPHITE AUGMENTED WOOD EPOXY LAMINATE TEST MATRIX

(Number of Samples)

SAMPLE CONFIGURATION (Reference Figure 70)

Test Control Fully Augmented
Tyve (No Augmentation) Laminate*

Tension Stud
Ramp-to-Failure _ 6 6(2) **
At Room Temperature

| Tension Stud Fatigue
| Target 104 Cycles 2 3
At Room Temperature

Tension Stud Fatigue
Target 10° Cycles 2 2(1) **
At Room Temperature

| Tension Stud Fatigue
3 Target 100 Cycles 2 2
At Room Temperature

*Unless otherwise noted, augmenting fabric is ORCOWEB Graphite
**Value in brackets is the number of samples using Fiberite W-1705 Graphite
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Side B

Figure 72. - ORCOWEB Graphite Cloth (4.75 oz/sq yd, 0.010 in dry thickness)

Figure 73. - FIBERITE Style W-1705 Graphite Cloth (5.86 oz/sq yd, 0.015
in dry thickness)
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gure 74, Typical Compression Test Set-Up, Mounted Extensometer Shown
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17.0 APPENDIX E - An Evaluation of Wood/Epoxy Laminate
with Scarf Jointed Plies in Compression

Summary

An exploratory test program was designed and implemented by Gougeon
Brothers, Inc. (GBI) to investigate the performance of wood/epoxy laminate
featuring staggered scarf jointed plies in compression., Tests were conducted
in ramp-to-failure and cyclic fatigue. Variables examined were scarf joint
slope and non-optimum scarfs. The non-optimum scarfs featured joint
overrides or gaps of two different magnitudes.

As expected, shallower slope scarf joints outperformed steeper sloped
joints, particularly in fatigue. Other tests suggest that fairly substantial
scarf overrides degrade compressive fatigue performance insignificantly
relative to ideal joints. On the other hand, gaps or less substantial
overrides seem to degrade performance noticeably relative to ideal joints.

Background

Contract DEN3-260 was awarded with one of its objectives being that of
developing wood composite blade technology. A concurrent DOE/NASA program,
the design of the MOD-5A rotor, was taxing the limits of the wood composite
materials data base. Existing design allowables data were predominantly
established from wood composite samples featuring plies with either no
joints or staggered butt joints. Under fatigue conditions, especially
tension fatigue, it was evident that damage originated frequently in the
butt joints of individual plies.

Within the context of this contract's goals, as well as supporting possible
needs of the MOD-5A rotor, some testing of laminate featuring scarf-jointed
plies was of considerable interest. At the same time, some testing of scarf
jointed plies had been conducted within the framework of the MOD-5A program.
That testing concentrated on optimum 12:1 slope scarfs. It also evaluated,
to a lesser degree, the effect of various quality joints and the effect of
high moisture content on the performance of laminate with scarf jointed
plies. A report of those tests is being generated under the MOD-5A program.

The thrust of this test program was to evaluate scarfs of three different
slopes, nominally 4:1, 10:1, and 16:1. It was expected that this data could
aid in determining whether the expected higher performance of shallower
slope scarfs would justify the increased handling difficulty of veneer with
more damage prone edges. In addition, future tolerancing of manufacturing
processes would be aided by knowing which deviations from optimum assembly
of plies would least adversely influence the performance of the laminated
structure. Therefore testing of 10:1 slope scarfs with 0.25 and 0.50 inch
gaps and overlaps was also undertaken.

137



Compression tests were proposed primarily due to lower specimen cost.
Nevertheless, compression tests were expected to offer useful insights into
the performance of laminate with scarf jointed plies. Compression testing
tends to yield results which are less sensitive to ply joint configuration
than are tension test results.

Test Program Design

The test program matrix is shown in Table XXVIII (Note that Tables and
Figures for this appendix are included within this section). Numbers of
samples are indicated for each defined sample configuration and test type.
Control samples (containing no scarf joints) were also taken from each
laminate billet to both characterize the laminate and to allow relative
performance comparisons of scarf jointed laminate to be made.

A1l testing was to be conducted at room temperatures (65 to 75 degrees
Fahrenheit). Tests prescribed included compression ramp-to-failure, and
compression fatigue tests with a constant stress ratio (R) of 0.1 (R =
minimum magnitude stress/maximum magnitude stress). Fatigue lests were to be
targeted to 10,000, 100,000 and 1,000,000 cycles.

The basic sample design was a 2 inch thick by 2 inch wide by 12 inch tall
laminate block. Grain was to be aligned parallel to the major dimension. The
block would be composed of 19 to 20 Douglas 1ir veneer plies and WEST SYSTEM
(R) Epoxy. The middle three plies would each have a single scarf joint
(except control samples). The middle ply would have a scarf joint centered 0O
inches from each end of the sample. Fach adjacent ply would also contain a
single scart joint, staggered on centers 3 inches from the center scarf
joint such that each scarf joint center would be nominally three inches from
the next scarf joint center. This essentially symmetrical configuration, as
shown in Figure 79, simulates a typical volume taken from structural
laminate assembled with scarf joints.

Sample Fabrication

Two billets (designated NA and NB) of test laminate (nominally 96 inches by
24 inches by 2.1 inches) were tabricated from GBI specified Blade Grade 1
(BG1), 1/10th inch thick, rotary peeled Douglas fir veneers. BG1 is the
highest structural classification for ultrasonically screened veneer used Dy
GBT in wind turbine blade construction. The adhesive used was WEST SYSTEM
(R) 105 Epoxy Resin and 206 Hardener. Billets were laminated under 24 inches
(mercury) of vacuum.

Veneers for each billet were conditioned to average wood moisture contents
ot 7.4 and 7.1 percent for billets NA and NB respectively. Although the
veneers were generally taken at random from available BGl veneer inventory,
individual veneers were weighed and assigned to the two billets on an
equitable basis to minimize density variation.
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To further minimize variation among test sample groups, each laminate billet
was designed so that a large dispersion of variable groups would be
fabricated from the same material. This scheme is illustrated in Figure 80.

The scarf joint detail is generalized in Figure 81 for non-optimum scarf
joints.

Testing Methods

Compression ramp-to-failure and cyclic fatigue tests were all conducted at
GBI's Materials Test Laboratory. An MTS (Model 810.14-2) two column, 110,000
pound load capacity, servo-hydraulic, closed-loop test system was utilized
to perform all tests. Calibration of the system electronics for accuracy of

both load and stroke measurements was conducted within 6 months of all
tests.

Five minute ramp-to-failure tests were conducted per ASTM Standard D198. The
selected ramp was 7900 pounds per minute. Tests were conducted at room
temperatures ranging from 64 to 72 degrees Fahrenheit. A uniform failure

criterion of 0.2 inch actuator deflection (from start of ramp) was
established. .

Compression fatigue tests were conducted at a constant stress ratio of 0.1.
A 6 Hz sinusoidal load was applied to the fatigue test samples while under
closed-loop load control. Progressive damage could be monitored via
measurement of peak-to-peak actuator movement as a constant peak-to-peak
load was applied to the sample. This feature was useful in establishing
failure trends and aided in identifying runout tests (tests which were
excessively outperforming a failure prediction) which required termination,
A failure criterion identical to that for ramp-to-failure tests was used for
fatigue samples. All fatigue tests were conducted at room temperatures
ranging from 64 to 75 degrees Fahrenheit.

A typical test configuration is illustrated in Figure 82. A typical failed
sample is shown in Figure 83.

On a selected basis, laminate moisture content (LMC), of failed
ramp-to-failure and fatigue specimens, was determined using oven drying
method (ASTM Method D143, Sections 124 and 125). IMC is lower ‘than the
expected wood moisture content due to the presence of epoxy adhesive in the
bulk mass being evaluated. This value of wood fiber weight to total laminate
weight typically is 82 percent. Therefore a general conversion of LMC to
wood moisture content (WMC) can be made by multiplying WMC by a factor of
1.22, IMC is computed by the following method:

100 x (Post Test Weight - Oven Dry Weight)
IMC (Z) =

Oven Dry Weight
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Test Results and Conclusions

Based on available LMC data shown in Table XXIX, it can be seen that little
variation existed from sample to sample. Nevertheless, test result stress
levels have all been adjusted to a nominal WMC value of 127 in an attempt to
reduce the effect of moisture content variation. This adjustment also allows
data to be compared to other wood composite data which has been similarly
corrected. This adjustment is documented at the end of this section.

Test results for ramp-to-failure tests are given in Table XXIX. Test results
for fatigue tests are tabulated in Table XXX and are plotted in Maximum
Stress versus Total Cycle (S-N) format in Figures 84 and 85. These results
are summarized and discussed later in this section.

For the purpose of improving the quality of comparative conclusions, samples
taken along similar longitudinal portions of the billets were targeted to
similar cycles-to-failure. This selection of specific billet locations was
such that near one edge of each billet, samples were typically targeted to
the lowest number of cycles-to-failure while at the other end samples were
typically targeted to the highest number of cycles-to-failure. Because on
billet NA the laminate strip from which low cycle samples were taken was
generally weaker than the laminate strip from which high cycle samples were
taken, the slope of the S-N curves tend to be artificially low. Larger
sample populations and more random sample selection would remedy this.

Ramp-to-failure results are summarized in Table XXXI. The results of control
sample tests reveal a somewhat higher level of performance (4.6%) from
billet NB when compared to billet NA controls. Ramp-to-failure samples
featuring 10:1 scarfs with 0.50 inch overlaps were also tested from each
billet and showed a somewhat more modest (2.17) performance difference.
Again, NB samples outperformed NA samples.

Ramp-to-failure results are characterized by relatively low scatter even
with small populations. Nevertheless, ramp-to-failure results provide less
dramatic conclusions than do fatigue results. Two trends are detectable:

1. Shallower slope scarf joints seem to offer slightly better static
performance.

2. Overlap defects are better tolerated than are gap defects.

Compression fatigue results as shown in Table XXXII, although also clouded
somewhat by scatter and small populations, suggest more significant trends.
A comparison of non-scarf jointed (control) results to the results from
different scarf jointed plies, is consistent with intuitive expectations of
improved performance with shallower scarf slopes. Comparing linear
regression values from the developed S-N curves at 10,000 and 1,000,000
cycles shows that 4:1 scarfed material performed at 86 percent of the
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control material level. Similar comparisons show 10:1 scarfed material
performing at 94 percent of control while the 16:1 material performed at 99
percent of control.

Performance comparisons of 10:1 scarfed material with overlaps and gaps also
is consistent with expectations. Samples with 50% scarf overlaps performed
at 96 percent of the level of unscarfed samples using the same comparison
criteria described for the comparison of 4:1, 10:1, and 16:1 scarfed
material. This value is essentially the same as the 94 percent value for
optimum 10:1 scarfed material. On the other hand, 10:1 scarfed material with
50% gaps performed at 91 percent of the level of unscarfed samples. The net
performance difference between 50% overlapped and gapped samples is 6
percent, in favor of the overlapped samples. Even with the relatively small
sample populations, it is reasonable to view this result to be significant

due to the consistent relationship of the linear regression curves of both
data groups.

Sample populations of 10:1 scarfed material with 25% overlaps and gaps were
extremely small, and therefore these results must be interpreted in very

general terms. The samples with 25% gaps and overlaps tended to perform more
in line with the 50% gap samples.

Three conclusions of reasonable significance can be drawn from the fatigue
tests:

1. Compressive fatigue performance of material with 16:1 scarf
jointed plies approaches the performance of material without joints.
10:1 (and steeper) scarf jointed plies show apparent degradations in
compressive fatigue performance.

2. The compressive fatigue performance of material with 50% scarf
joint overlaps is superior to material with 507 scarf joint gaps.

3. The compressive fatigue performance of 10:1 scarf-jointed

laminate is not appreciably degraded when the joints are overlapped
by 50% during manufacture.
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ADJUSTMENT OF WOOD LAMINATE MECHANICAL PROPERTIES FOR MOISTURE CONTENT

From Reference 8, Pages 4-32 to 4-33:

-[(M-12)/(Mp-12)]
P = P(12) x [P(12)/Pg]

Where:
M = moisture content (%) of wood

Mp = wood moisture content at which changes in property due to
drying are first observed (for Douglas fir, Mp = 24%)

P = property at wood moisture content, M
P(12) = property at 12% wood moisture content

Pg = property for all wood moisture contents > Mp

P(12)/Pg = constant, K

K(t) = 1.21 (tension)
K(c) = 1.92 (compression)
K(s) = 1.26 (shear)

If:

M(L.) = measured moisture content of fir/epoxy laminate
M = wood moisture content = 1.22 x M(L)

P(t) = physical property as tested

Then:

[(1.22 x M(L) - 12)/12]
P(12) = P(t) x K
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NOTE: CONTROL SAMPLES UAVE TUR
DOME. OVERALL DIMENSIONG BUT
CONTAIN NO SCARF JOINTS

Figure 79, - Staggered Scarf Joint Test Sample Configuration

ot
10
9
sr-
g S —
=
5 ¥
4 o
Py .
2z
s - o
CONTROL - :| 101 16° io: | = CONTIRO
NOMINAL NOMINAL  NOUINAL  SOXOVER 2%% OVER -
A ® c 1= = " G
BILLET NA
78
10
3
)
7
z )
5 4
4
3
Z
!
CoNTFOL  |o:] o: | | 10:]
2EBGAr Z5% GAP 509 OVER BC% GAP
A B c D e =
BILLET NB

Figure 80.- Test Billet Allocation
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ORIGINAL PAZL &
OF POOR QUALITY

______----u-Ill!E=Ei____________--.!!....-----______—

OVERLAPFP JOINT 50% OVERLAP, D= Q.50
2575 OVERLAF D= ©.25

NOTE |: OVERLAFP JOINTS
TEND TO DISTORT
SOMEWHAT WITHIN TUE

L ATE..

D AMINATE.
N

GAPFP JoilT 50% GAP, D = ©0.50

25% GAP, D -O.25

NOTE 2: SCARFE SLOPE 104
ForR ALL NoNd-oPTiMuUM
CONFIGURATIONS .

Figure 81. - Non-Optimum, Single Ply, Scarf Joint Details

Figure 82. - General Test Figure 83. — Typical Failed
Configuration Fatigue Specimen
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18.0 APPENDIX F - Prototype Rotor Manufacturing Plan
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18.1 MANUFACTURING PLAN - PURPOSE

To provide accurate documentation of processes and procedures used in
fabricating a prototype 90-foot diameter MOD-O rotor as designed under
Contract DEN3-260.

18.2 MANUFACTURING PLAN - OBJECTIVES
Objectives are as follows:

18.2.1 Demonstrate suitability of processes and procedures for
fabricating and assembling the prototype 90-foot diameter MOD-O
rotor.

18.2.2 Maximize efficient use of resources for fabrication of
prototype rotor

18.2.3 Develop baseline manufacturing plan which could serve as
reference frame for production manufacturing plans

18.3 HARDWARE DESCRIPTION
18.3.1 Description of Rotor

The 90-foot diameter rotor is fabricated from six principal
structural elements. These are namely one high pressure composite
hub half shell, one low pressure composite hub half shell, two high
pressure outer rotor (blade) half shells, and two low pressure outer
rotor half shells. Each pair of half shells will be bonded to each
other, after which fingers shall be cut into the root end of each
outer rotor assembly and into both ends of the hub assembly. The two
outer rotor assemblies will then be bonded to the hub by use of the
finger joints to create an integral rotor structure. Engineering
drawings describing the prototype rotor and associated hardware are
listed in Table XXXIII.

18.4 MANUFACTURING PROCESSES AND PROCEDURES

18.4.1 Process Specifications

Table XXXIV is a series of process specifications defining each
individual process and procedure required to complete the
manufacturing operations. Included in the process specifications are
specific requirements for inspections and tests for quality
assurance,
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18.5 QUALITY ASSURANCE PLAN
18.5.1 Quality Assurance - General

All veneers utilized within the rotor structure will be either Blade
Grade 1 (BGl) or Blade Grade 2 (BG2) per Gougeon Brothers, Inc.
Materials Specification GMS-001. All epoxy used (except where noted
in Table XXXIV.) will be WEST SYSTEM Resin (105 BG) and Hardener
(206 BG) in compliance with GMS-002 (pending final release).

18.5.2 Quality Assurance - Specific

The Manufacturing Process/Quality Specifications in Section 18.4
include specific requirements for quality assurance inspections and
tests. Such activities are checked off by the individuals
responsible for quality assurance as they are performed. Copies of
these specifications accompany and govern all operations of the
project.

18.6 EQUIPMENT, TOOLING, SPECIAL FIXTURES AND FACILITTIES

Table XXXIII is a list of equipment, tooling and special fixtures used in
performing work on this project. The list includes descriptions, sources,
specifications, quantities and availability of these items.

The south end of the Bay City manufacturing plant is scheduled for use on
fabrication and assembly work under this project. Figure 86 shows the
location of major equipment and fixtures.

18.7 MATERIALS HANDLING

Material, fabricated items and assemblies are to be moved and transported
using the materials handling equipment listed in Table XXXIII.

18.8 PACKAGING AND SHIPPING

Provisions for packaging and shipping prototype rotor components to the

finger joint machining subcontractor and for final shipment to NASA's
Plumbrook Test site are contained in the Design Drawings (see Table XXXIII).
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18.9 SAFETY
The foremost consideration in all activities is safety. All persons working
on the project shall be provided with on-the-job training covering all

aspects of safety, including:

1. Respiratory protection, involving handling of epoxy mixtures,
sanding and grinding operations.

2. Eye protection at all times.
3. Proper operation of equipment, lift trucks, etc.
4. Wearing of gloves and aprons in handling epoxy coated materials.

5. Fire protection, including no smoking policy and use of and
location of fire extinguishers.

6. Avoidance of injury due to improper lifting or other strenuous
physical activities.

7. Installation of guards on equipment capable of cutting or
pinching.

8. Good housekeeping, work area clean-up, and common sense while on
the job.

18.10 SCHEDULE

Figure 87 is a schedule showing anticipated times to complete various
milestones of the project.
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Drawing No.

Prototype Rotor

TABLE XXXII1I

ENGINEERING DRAWINGS. 90 FOOT, MOD-O PROTOTYPE ROTOR

Drawing Title

CF-10~-060
CF-10-061
C -10-062
-C ~10-063
CD-10-064
CF-10-066
CF-10-067
CD~-10-068
CF-10-069
CF-10-070
CF-10-071
CF-10-072
CF-10-073
CF-10-074
CF-10-075
CF-10-078
CF-10-079
CF-10-080
CF-10-081
CF-10-082
CF-10-083
CC-10-084
€C-10-085
C -10-086
CC-10~-087
CC-10-090
CD-10-096

Final Design Rotor Planform & Tolerances

Outer Rotor Open Planform

Outer Rotor Lofting

Inner Rotor Lofting

Ice Detector Access Detail & Tip Vent/Tip Weight Detail
Hub - Upwind Configuration

Hub - Downwind Configuration

Outer Rotor Sectional, Station 540, Tip

Outer Rotor Sectional, Station 156 & 348

Hub Internal Structure - High Pressure Shell View

Hub Internal Structure - Low Pressure Shell View

Hub Closed Planform & Finger Joint Details

Hub Section

External Blade Detail - High Pressure Side & Finger Joint Detail
Hub Veneer Schedule

Hub Center Cutout Detail - High Pressure Shell - Full Size
Outer Rotor Instrumentation Details

Outer Rotor Sectional, Station 252 & Instrumentation Enclosure Detail
Outer Rotor Sectionals, Stations 372 & 468

Outer Rotor Pressure Tap Sectional, Station 276

Outer Rotor Pressure Tap Sectionals, Stations 396 & 492
Hub-Crossgrain Fasteners - Concept "A" - Preliminary
Hub-Crossgrain Fasteners - Concept "B" - Preliminary

Outer Rotor Veneer Schedule

Final Shipping Configuration

Preliminary Shipment Configuration

Finger Joint Assembly Details

Equipment, Tooling and Special Fixtures

CD-10-065
CF-10-088
CF-10-089
CD-10-091
CD-10-092
CC-10-093
CD-10-094
CF-10-095
CB-10-097
CF-10-098
CF-10-099

Twist Gauge Detail

Aft Bunk for Final Shipment

Forward Bunk for Final Shipment :
Bunks for Preliminary Shipment of Blades
Bunks for Preliminary Shipment of Blades
Handling Provisions

Hub Mold Schematic

Outer Rotor Mold - Schematic (L.P. Mold Shown)
Sleeve Installation Schematic - Exploded View
Hub Fastener Sleeve Installation Hardware Details
Splice Joint Assembly - Tip Jack
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